Braden Eichmeier

(385) 231-6009 • eichmeierbr@gmail.com • eichmeierbr.github.io

Education:	
Carnegie Mellon University – School of Computer Science Master of Science in Robotic Systems Development GPA: 4.08/4.00	Pittsburgh, PA May 2021
Utah State University Bachelor of Science in Mechanical Engineering GPA: 3.99/4.00	Logan, UT May 2019
Experience:	
Hill Air Force Base F-16 Simulation Engineer	Ogden, UT June 2021 – Current
 Maintain high fidelity simulator to support F-16 Block 30 operational flight pr Simulate ASQ-236 Radar Pod interaction with the F-16 for SAR map generation Modernize difficult to maintain legacy codebase utilizing state of the art simulation 	ogram development on and recall ation tools and standards
ProtoInnovations, LLC Independent Consultant	Pittsburgh, PA January 2021 – May 2021
 Researched risk analysis and mitigation techniques for the mobility system of planetary rovers Synthesized fault tree and failure modes effect analysis to predict rover success for a given mission Quantified the likelihood and uncertainty of degraded rover performance using empirical analysis 	
Autonomous Solutions Inc. GN&C Research Intern	Logan, UT May 2020 – August 2020
 Developed algorithms for image processing and feature detection for neuromorphic cameras Formulated and prototyped event-visual-inertial localization pipeline for autonomous vehicles Customized simulation environment using Blender to resemble real-world testing facilities Projects:	
 SLAM Covariance Estimation Personal Pro Investigate a novel method for estimating sensor covariance and reliability in a Implement single sensor odometry algorithms for stereo camera, 3D LIDAR, I Train neural network to estimate the sensors' relative covariance using the raw Pursue publication in academic journal or conference following the guidance of 	oject April 2021 - Current a dynamic environment MU, and wheel odometry odometry estimates of a former professor
MRSD Final ProjectCarnegie Mellon University	August 2019 - May 2020
 Augmented DJI M600 drone with an Autonomous Airborne Collision Avoidar Created simulation environments in MATLAB and Gazebo (ROS) to iterate lo Designed local planning algorithm using a potential field approach to reactivel 	nce System (AACAS) ocal avoidance planner ly avoid dynamic obstacles
Autonomous Vehicle Competition TeamUtah State University	January 2018 - May 2019
 Collaborated with small team on an autonomous car for Sparkfun's Autonomous Vehicle Competition Tuned a go-to-goal controller with LQR optimization in MATLAB to steer vehicle to next goal point Visualized the vehicle in RVIZ for simulations using URDF files derived from SolidWorks models Upgraded SLAM capabilities of the vehicle with Google Cartographer and a TIM551 LiDAR 	
Skills/Competencies:	
Programming Languages: Python, C++, MATLAB	

Robotics: ROS, State Space Control, Motion Planning, RVIZ, Computer Vision, URDF **Machine Learning:** Neural Networks, CNNs, SVMs, Reinforcement Learning