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Background - Sampling Techniques

e Find hyperparameters using dense sampling:
o Large holes often exist in the search space
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Background - Genetic Algorithms

1. Set-up model for learning task

2. Select initial generation of hyperparameters
o Domain Knowledge
o Sparse Sampling

3. Train models on learning task

4. Genetic algorithm selects new batch of parameters
o Select Parents, Cross-Over, Mutation

5. Repeat steps 2-4 as desired
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Background - Genetic Algorithms

e Used to generate high-quality solutions to optimization and
search problems

e GAs can be used to tune learnable parameters
o traffic light management
o hyperparameter selection in Deep Reinforcement
Learning for a manipulation task
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https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Search_algorithm
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Related Works - Hyperparameter Tuning

e SVM, KNN, AdaBoost, Random Forests [1]
e C(Convolutional Networks [2] [3]
e Random Initialization Time
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[1] Hyper Parameter Optimization using Genetic Algorithm on Machine Learning Methods for Online News Popularity Prediction
[2] Efficient Hyperparameter Optimization In Deep Learning Using A Variable Length Genetic Algorithm .
[3] Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks Carnegle
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Related Works - Training RL with GAs

e Directly train neural network weights in an RL task
e Train 4 million parameter network
e Resultant training is faster than A3C and DQN

DQN ES A3C RS GA GA
Frames 200M 1B 1B 1B 1B 6B
Time ~7-10d ~ lh ~4d ~1lhor4h ~ lhor4h ~ 6hor24h
Forward Passes 450M 250M 250M 250M 250M 1.5B
Backward Passes 400M 0 250M 0 0 0
Operations 1.25B U 250M U IBU 250M U 250M U 1.5B U

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning, 2018
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RL Environments/Heavy Randomness

Deep reinforcement learning faces substantial and unusual
challenges in evaluation and reproducibility

- Let’s Play Again: Variability of Deep Reinforcement Learning Agents in Atari Environments
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Process Overview

1. Use GA to search for best solution (Natural Evolution)
2. Approximate loss function with NN (Invasive Evolution)
o Densely sample search space
o Predict which genes will return the lowest loss
o Use results to create n children

3. Create next generation by mixing GA and NN children
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Process Overview - GA with Invasive Species
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Results - Test Case

Task: Guess 10 numbers [0,99]

GA setup:

Initial Population: 10
Number Parents: 4
Number Mutations: 1
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Number Guessing (LHC Sampling)
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Results - Different Sampling Methods

Sampling Success Distributions
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Results - Neural Networks

Model: MLP

Env: Handwritten digit classification
Task: Optimize 2 hyperparams

1) Learning Rate

2) Momentum

GA setup:

Initial Population: 10

Number Parents: 4

Number Mutations: 1
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MLP on UCI ML hand-written digits datasets
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Learning Rate Distribution Max Gradient Norm Distribution

Model: PPO2
Env: Cart-Pole

Results - RL -g

Task: Optimize 2 hyperparams o B S
1) Learning Rate :
2) Maximum Gradient Norm
GA setup:

Initial Population: 8

Number Parents: 4

50 Generations

Number Mutations: 1 " Carnegie
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Results - Improvement on Random Sampling

=100 random samples =100 samples from GA
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The GA focuses sampling in low cost regions, this helps provide better results when
compared to random guessing
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Conclusion and Future Work

Conclusion:

e Novel GA framework with Invasive Species

e Optimization with deterministic and non-deterministic models
e Significant improvement over random sampling

Future Work:
e Evaluate performance against standard GA

e Explore other ML models for Invasive Species
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Questions?

Team E

Carnegie
Mellon
University



