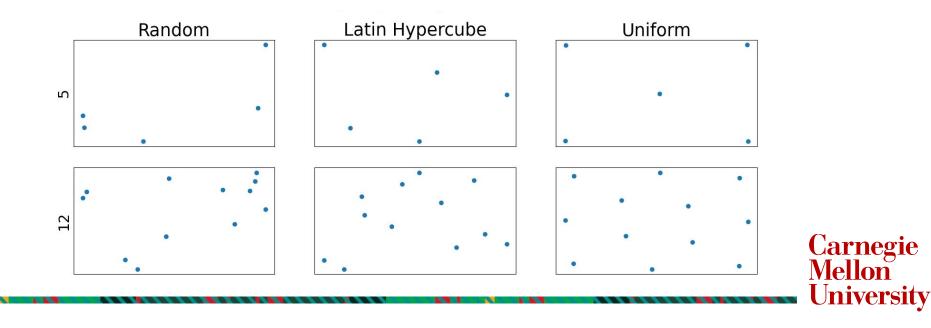
Carnegie Mellon University

Evolving Hyperparameters: Learning Enhanced Model Training

Braden Eichmeier, Shaun Ryer, Stefan Zhu

Background - Sampling Techniques

- Find hyperparameters using dense sampling:
 - \circ $\,$ Large holes often exist in the search space



Background - Genetic Algorithms

- 1. Set-up model for learning task
- 2. Select initial generation of hyperparameters
 - Domain Knowledge
 - Sparse Sampling
- 3. Train models on learning task
- 4. Genetic algorithm selects new batch of parameters
 - Select Parents, Cross-Over, Mutation
- 5. Repeat steps 2-4 as desired

Carnegie Mellon University

Carnegie Mellon

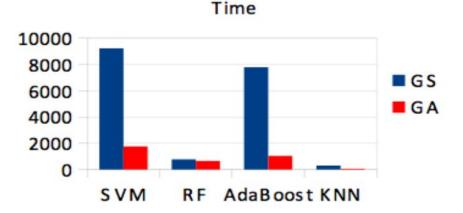
University

Background - Genetic Algorithms

- Used to generate high-quality solutions to optimization and search problems
- GAs can be used to tune learnable parameters
 o traffic light management
 - hyperparameter selection in Deep Reinforcement Learning for a manipulation task

Related Works - Hyperparameter Tuning

- SVM, KNN, AdaBoost, Random Forests [1]
- Convolutional Networks [2] [3]
- Random Initialization



[1] Hyper Parameter Optimization using Genetic Algorithm on Machine Learning Methods for Online News Popularity Prediction

- [2] Efficient Hyperparameter Optimization In Deep Learning Using A Variable Length Genetic Algorithm
- [3] Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks

Team E

Carnegie

University

Mellon

Carnegie Mellon

University

Related Works - Training RL with GAs

- Directly train neural network weights in an RL task
- Train 4 million parameter network
- Resultant training is faster than A3C and DQN

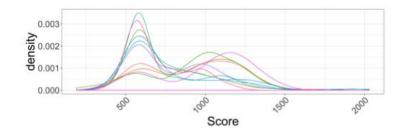
1.0	DQN	ES	A3C	RS	GA	GA
Frames	200M	1B	1B	1 B	1B	6B
Time	~7-10d	$\sim 1 { m h}$	$\sim 4d$	$\sim 1 {\rm h}~{\rm or}~4 {\rm h}$	$\sim 1 \mathrm{h} \mathrm{ or} \mathrm{4 h}$	$\sim 6h \text{ or } 24h$
Forward Passes	450M	250M	250M	250M	250M	1.5B
Backward Passes	400M	0	250M	0	0	0
Operations	1.25B U	250M U	1B U	250M U	250M U	1.5B U

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning, 2018

RL Environments/Heavy Randomness

Deep reinforcement learning faces substantial and unusual challenges in evaluation and reproducibility

- Let's Play Again: Variability of Deep Reinforcement Learning Agents in Atari Environments



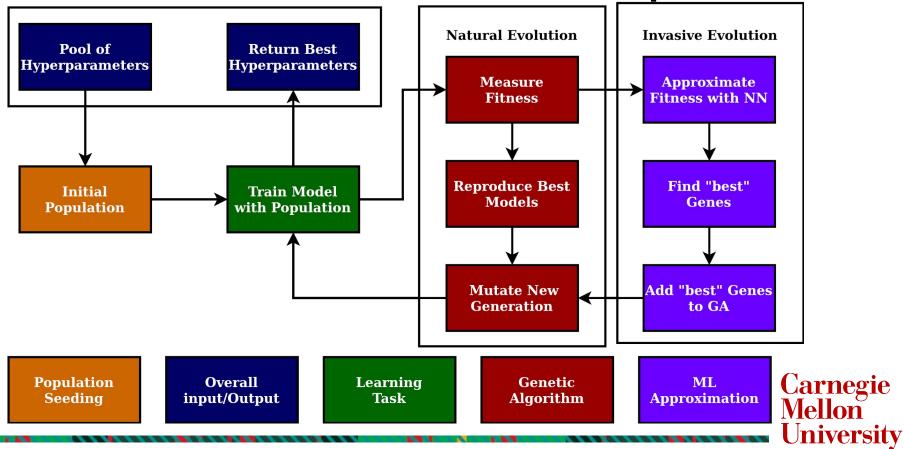
Process Overview

- 1. Use GA to search for best solution (Natural Evolution)
- 2. Approximate loss function with NN (Invasive Evolution)
 - Densely sample search space
 - Predict which genes will return the lowest loss
 - Use results to create *n* children
- 3. Create next generation by mixing GA and NN children

Carnegie Mellon

University

Process Overview - GA with Invasive Species



Results - Test Case

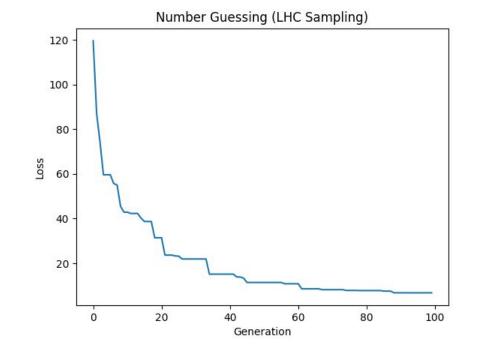
Task: Guess 10 numbers [0,99]

GA setup:

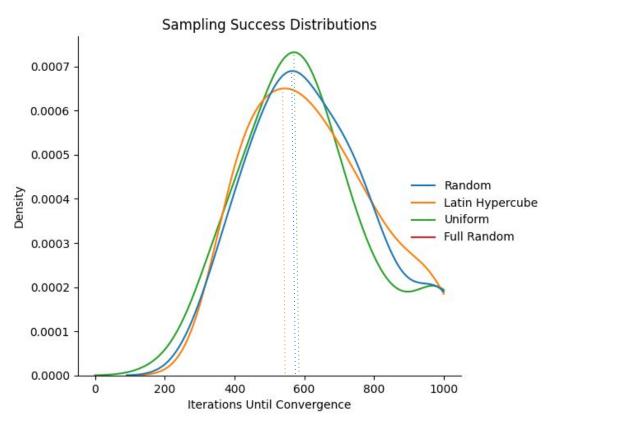
Initial Population: 10

Number Parents: 4

Number Mutations: 1



Results - Different Sampling Methods



University

Carnegie Mellon

Results - Neural Networks

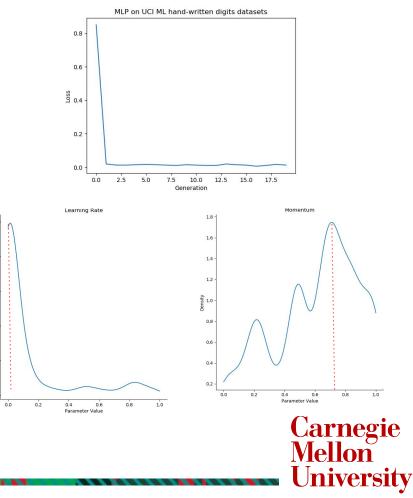
Model: MLP

Env: Handwritten digit classification **Task:** Optimize 2 hyperparams

- 1) Learning Rate
- 2) Momentum

GA setup:

Initial Population: 10 Number Parents: 4 Number Mutations: 1



Results - RL

Model: PPO2

Env: Cart-Pole

Task: Optimize 2 hyperparams

Generations

0

1) Learning Rate

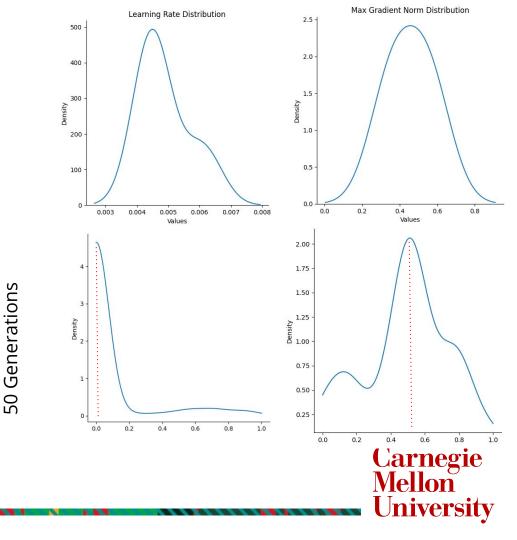
2) Maximum Gradient Norm

GA setup:

Initial Population: 8

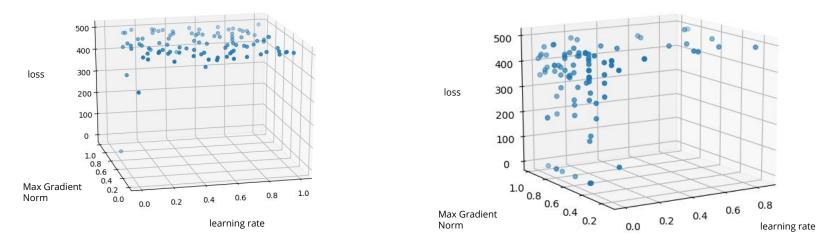
Number Parents: 4

Number Mutations: 1



Results - Improvement on Random Sampling

= 100 samples from GA



The GA focuses sampling in low cost regions, this helps provide better results when compared to random guessing

Team E

Carnegie Mellon

University

Carnegie Mellon

University

Conclusion and Future Work

Conclusion:

- Novel GA framework with Invasive Species
- Optimization with deterministic and non-deterministic models
- Significant improvement over random sampling

Future Work:

- Evaluate performance against standard GA
- Explore other ML models for Invasive Species

Team E

Questions?

