
Evolving Optimal Hyperparamters:
Learning Enhanced Model Training

Braden Eichmeier
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Email: beichmei@andrew.cmu.edu

Shaun Ryer
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Email: sryer@andrew.cmu.edu

Stefan Zhu
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Email: zheyaoz@andrew.cmu.edu

Abstract—We explore a method to effectively select optimal hy-
perparameters for a general learning task to reduce model train-
ing time. Randomly selecting hyperparameters is time-consuming
and often ineffective. This paper explores using genetic algo-
rithm (GA) exploration of the hyperparameter search space to
improve parameter selection in learning tasks. We compare the
effectiveness of the GA exploration compared to a random, grid
search, or Latin hypercube selection of hyperparameters. We
also developed a novel way to keep under-performing genes
around by using a neural network as a method of introducing
”invasive species” into the genetic algorithm optimization. This
helps encourage exploration in the genetic algorithm towards
lower loss values and increased performance in non-deterministic
environments. Using this system we were able to get results even
in more random settings such as parameter selection within a
reinforcement learning (RL) framework.

I. INTRODUCTION

Hyperparameter selection affects a wide array of robotics
problems including machine learning, control gains, feature
detection in computer vision, and many others. User-defined
parameters selected before algorithm execution heavily affect
the overall success of these algorithms. In many settings,
improper hyperparameter selection leads to complete failure
of the system. As a consequence, a large amount of time
and energy goes into selecting hyperparameters by the user.
Typical methods to select hyperparameters involve random
searching [1], ”rules of thumb” [8], domain knowledge, or
brute force grid searching. Each of these methods can produce
sufficiently acceptable results given enough time. Recent con-
cerns in response to the use and consumption of energy have
questioned the ethics of training complex data models [20].
Developing methods to improve the hyperparameter tuning
process is thus an important field for both the individual
researcher and the community at large.

Effectively searching the hyperparameter space falls within
two major categories: sampling techniques and learning tech-
niques. Sampling techniques involve selecting individual sets
of hyperparameters independent, or mostly independent, of
one another. Learning techniques, on the other hand, use the
knowledge gained from previous samples to effectively select
future samples.

We propose combining the two search categories to alleviate
their individual shortcomings. In this method, the sampling

methods will sparsely search the parameter space to gain a
rough understanding of the space. After generating an initial
sample set, a learning algorithm will be used to effectively ex-
plore the spacing between samples. We use a genetic algorithm
(GA) as the learning agent to compare the effectiveness of
the three described sampling techniques (grid search, random
search, Latin hypercube search).

Genetic algorithms are a form of search-based optimization
algorithm inspired by genetic mutation in evolutionary biology
[9]. The base genetic algorithm mimics nature by simulating
natural selection within a population of samples. Given a
population, each sample is evaluated in terms of a fitness
function. Low performing samples are discarded while the
high performing samples are selected for reproduction. The
next generation of samples is instantiated by performing a gene
crossover from multiple samples in the previous generation.
Random alterations in the new sample’s genes simulate gene
mutation to further explore the search space.

In addition to exploring the effectiveness of various sam-
pling techniques, we also explore various methods to improve
GA performance and reduce hyperparameter learning. Though
this framework can be applied to any general learning problem,
we verify the performance of the automated tuning process in
various OpenAI Gym environments [2].

II. RELATED WORKS

A. Tuning with Sampling Techniques

Sampling techniques involve methods that do not use pre-
vious samples to focus the search space. These methods are
commonly implemented for hyperparameter tuning due to
their simplicity. Sampling methods explore the search space
using either uniform or stochastic methods. More complex
sampling techniques use a mixture of these approaches to more
effectively represent the entire space with fewer samples. An
example of a uniform method is a grid search, which tests all
pairs of parameters. In high dimensional spaces, this method
quickly becomes ineffective [5]. This problem is exacerbated
if the hyperparameters are continuous and therefore provide
infinite possibilities. To combat the problems of uniform
sampling, a common approach is to randomly sample the
search space. Users must select a limit to the number of
parameter sets in these problematic settings. If the number



is too low, the model runs the risk of not training within
an optimal reason of the search space. Too high a number
can drastically increase training time. Other methods, such as
Latin hypercube sampling and Sobol sequences [13], attempt
to maximize the spacing between seemingly random samples.

B. Tuning with Learning

Learning methods, in contrast to sampling methods, use
previous data to influence the sampling for future parameters.
Recent reviews of hyperparameter tuning detail the use of
”particle swarm optimization, genetic algorithms, coupled sim-
ulated annealing and racing algorithms” [5]. Learning models
can be ineffective for hyperparameter optimization when they
require large amounts of data to converge on a solution due to
the cost of computing the objective function. Another problem
of learning methods stems from seeding the algorithm. Several
algorithms, such as particle swarm optimization, genetic algo-
rithms, and gradient-based approaches are dependant on the
starting sample(s). Selecting a poor starting sample can lead
to an inefficient exploration of the space and susceptibility to
local minima.

Recent literature has shown success for GAs tuning hyper-
parameters in deep learning. Examples include image recog-
nition [26] [25], mineral concentration estimation [22], and
online news popularity prediction [24]. Each of these methods
used either artificial neural networks (ANNs) or convolutional
neural networks (CNNs). In other training applications, GAs
have replaced gradient descent as the optimization method to
tune the parameters in ANNs [11].

C. GAs and RL

In the field of reinforcement learning, GAs have been used
to tune learnable parameters [15]. Applied examples of GAs
and RL include traffic light management [14], and replacing
back-propagation in deep reinforcement learning benchmarks
(such as Atari) [21]. Recent work in this field performed
hyperparameter selection in Deep Reinforcement Learning
(DRL) for a manipulation task [17]. However, their work only
selected the initial population with random sampling and did
not consider the effects of other sampling techniques. Another
interesting paper in this field uses reinforcement learning
to improve the performance of a GA in the mutation and
crossover functions [4].

D. Improving GA Performance

Extensive research has been performed in improving GA
convergence. The research focuses on improving the four
primary GA operators: encoding [12], selection [10], crossover
[18], and mutation [3]. Encoding is representing the gene
structure of the parameter set. Selection is the method used to
determine which members of the population will reproduce the
next generation. Crossover is the method used to mix the genes
between two parents. Mutation is used to modify the genes
from the parents to further search the parameter space. Several
recent works have used a heuristic to guide the mutation and
crossover functions [7] [23].

Evaluating the fitness function perfectly is often a high cost
process. Another field of improving GA training is Evaluation
Relaxation. In this scheme, the training uses an approximation
of the fitness function to reduce computational complexity
[16]. This method reflects ”Dyna” learning in model-based
RL. As with general function approximation, this can be done
with any form of regression. The complexity of modeling
the fitness function would necessitate using a more complex
learning agent, such as a neural network or a support vector
machine.

Another tunable parameter within GAs is how long each
sample is allowed to perform. In other words, what is the stop-
ping criterion for each sample that does not encounter a failure
condition within the environment? This concept is known as
Time Continuation [19]. At its core, Time Continuation is
an instance of the exploration-exploitation trade-off. Stopping
the exploration of a population early introduces uncertainty in
selecting the best parameter sets for reproduction at the benefit
of reducing training time.

E. Position Relative to Related Work

Our proposed algorithm has several key differences com-
pared to the aforementioned related works. Previous appli-
cations of GAs in RL tasks have focused on using GAs to
replace backpropagation in deep Q learning. Only a single
paper shows work in using GAs to optimize hyperparameters
in this area. We extend their work using several methods.
First, the previous paper only used purely random sampling to
initialize their GA. We explore the effectiveness of two other
sampling techniques. Second, we introduce a novel concept of
”invasive species” within a GA to promote better exploration
of the search space. Finally, literature in this field reports the
resultant optimal loss function without any intuition behind
the learned hyperparameter space. Due to the high variability
of many RL tasks [6], only reporting loss results can be non-
informative. As such, we report the results of hyperparameters
as a distribution of parameter values that produce sufficiently
low loss values.

III. METHODS

The Genetic Algorithm that will be developed is based on
a variant of the Multi-offspring Improved Real-Coded Genetic
Algorithm (MOIRCGA). This decision was made to decrease
the number of iterations needed to get the Genetic algorithm to
converge. The specific structure of the MOIRCGA algorithm
is shown in Fig. 1.

A. Genetic Algorithm

The Genetic Algorithm functions as follows. First, an initial
population is generated using any sampling method. This
population is then evaluated and sorted according to its loss
function from the environment. The loss function is returned
from the environment the GA is trying to optimize. For this
paper, most tests are run on a basic RL cart-pole problem.
Then, the algorithm selects the n individual samples from the
population with the smallest loss. These individuals are used



to produce children using crossover and mutation functions.
The children created from the current generation of parent
samples comprise the next sample generation. This process is
repeated until the loss is sufficiently minimized or the number
of iterations is met.

Fig. 1. Flowchart showing the functionality of a generic genetic algorithm
framework. The basic steps are sample initialization, generation evaluation,
parent selection, cross-over, mutation, and generation creation.

B. Initial Population

The rate of convergence and success of a GA often depend-
ing on the quality of the initial population. Many parameter
searches converge only once the algorithm has sampled suffi-
ciently close to an optimal region. To balance the character-
istics and flaws of uniform and stochastic sampling methods
we utilize the Latin hypercube sampling (LHS) method. In this
sampling technique, each dimension in the sampling space is
divided into n equally sized regions, where n is the number
of samples. Next, the sample is selected at random and placed
within the hypercube. Next, the dimensional index of the
sample is removed from consideration for future samples. In
two dimensions, this means each row and column in a unit
square region can only be sampled once using this method. The
sampling is repeated until no more n-dimensional hyperunits
remain in the sampling space. Figure 2 shows a simple 2-
dimensional example of LHS sampling with 4 samples.

Additionally, we use uniform random sampling and sparse
grid sampling as alternative methods in generating the initial
sample population. We compute both the sampling and hyper-
parameter optimization within a unit hyperparameter space.
The parameters are scaled to the environment external to both

Fig. 2. Latin hypercube sampling with 4 samples. Sampling in this manner
is a pseudorandom procedure that encourages the sampling to further explore
the state space. Using LHS sampling may improve the base performance of
the GA.

the GA and the sampling functions to promote environment
agnostic adaptation.

C. Crossover

Crossover combines the genetic information of two or more
parents to create children that have similar genes as the
parent. In this application, the genes of the population are
the hyperparameters for the reinforcement learning agent. To
accomplish crossover, the highest performing parents from the
previous generation are paired to create two children. One
child is created from the left half of one parent and the right
half of the other. The other child is created from the right half
of one parent and the left half of the other. This is repeated
for each pair of parents. If an odd number of parents exists,
the lowest loss parent will not share its genes. Crossover
is important as it allows good genes to survive but induces
change to explore populations close to the best parameters.

D. Mutation

Since crossover tends to save older genes, mutation is used
to add new genes into the population. This allows the algo-
rithm to explore new combinations that are not present in the
parents and further explore the search space. Mutation occurs
after a child sample is created using the crossover function.
For generic genetic algorithms, mutation will randomly select
a gene and change its value to another random value. This
random selection typically uses a uniform distribution. In
testing, this mutation was found to produce poor results. If a
given gene has very high extreme values, the mutation would
most likely pick a value in-between these two extremes. We
modify the mutation to have a fifty percent probability of
choosing a value either higher or lower than the best parent.
Then, the mutation algorithm performs a uniform sampling
within the designated sub-region. This helps push exploration
for parameters that are close to the edge of the search space.
We found this produced better results for parameters with
small values, such as learning rate.



E. ML Approximation

A major issue with genetic algorithms is that genes that
perform poorly do not have an effect on the algorithm and are
discarded. However, this information can be important when
determining the overall behavior of a system or predicting
values that might produce good results later. These values can
create good predictions of parameters with low loss values.

Additionally, Genetic Algorithms can struggle with param-
eter tuning in reinforcement learning environments. This is
due to the variance of results in the RL environment where
the same parameters can return very different results. If the
non-deterministic environment received bad results once, the
GA could discard good values that might produce good values
every other time. Again, having a function approximator can
help the GA find low loss values.

We solve this problem by using inspiration from ecosystem
diversity. Within a given ecosystem, the local species will
adapt and evolve into some optimal state. When an invasive
species from other ecosystems are artificially introduced, the
local species must adapt and improve or be wiped out. These
species can be created based on a function approximation of
all the results. This concept of invasive species pushes both
the native population and the invasive population into a more
optimal state.

For this system, we applied the invasive species concept
by using all values in the training history to update a small
neural network to approximate the parameter space. Using this
approximation, we predict the best parameter values. This was
then introduced back into the GA by populating half of the
parents with the predicted best parameters. The neural network
gives optimized values within the approximated space that
are then introduced into the true hyperparameter space as an
”invasive species”. This is shown in Fig. 3.

Fig. 3. Genetic Algorithm with ML Approximation.

IV. RESULTS

A. Deterministic Number Guessing

We first conducted a simple experiment to perform a pre-
liminary validation of our implementation. The task of the
genetic algorithm was to guess a pre-defined array of 10
numbers. The loss was defined as the L2 norm of the difference
between the target array and the array output by the genetic

algorithm. The genetic algorithm converged to the target array
with around 150 generations. Plotting the resulted loss of the
genetic algorithm shows the loss is monotonically decreasing.
Using this task, we repeated the experiment with different
sampling methods for the initial population generation. One
was the Latin hypercube sampling (Fig. 4) and the other
was uniform random sampling (Fig. 5. However, the different
sampling parameters did not produce noticeable results in this
simplistic learning task.

Fig. 4. Number Guessing with Latin HyperCube Sampling

Fig. 5. Number Guessing with Uniform Random Sampling

A second test further explores the effectiveness of each
sampling method in generating the initial GA population.
Three methods are evaluated in this test: Latin hypercube,
random, and uniform sampling. The random samples for this
test are all drawn from a uniform distribution of the entire
search space. Uniform sampling tries to maximize the distance
between each sample. In an ideal case, such as a square
value in a 2D search space, this would form a perfect square
grid. In practice with non-square sample counts, this cannot
be achieved using a simple grid. We find uniform samples
by creating a dense set of uniform sample points within the



search space, then finding a k-means clustering algorithm
for the dense samples. Though computationally expensive,
this method generally performs well-spaced samples. Figure 6
shows example results for 5 and 12 samples for the 3 sampling
methods.

Fig. 6. Example results for each of the 3 sampling methods for 5 and 12
samples.

The effectiveness of each sampling method is found by
running the algorithm for 100 training iterations per method,
and finding how many samples does it take for the GA to
converge below a loss of 10. Then, each method is plotted
as a distribution of iterations required. Figure 7 displays the
results of this procedure. All three methods are centered
around 550-600 samples with an improved performance by
the Latin hypercube method. Repeating this procedure shows
some variance in which method is best, but LHC is often
the highest performing method. Also note the legend shows a
fourth method for comparison: fully random sampling.

We also attempted this test by repeatedly selecting each pa-
rameter from a uniform distribution without employing the GA
optimization. The lowest loss produced by this method after
100,000 iterations was 21.2. In a low dimensional problem,
randomly sampling points can achieve sufficiently optimal
results within a reasonable amount of iterations. However, this
test shows a better optimization method is required for as little
as 10 parameters.

The final validation for the algorithm in the test environment
is to report parameter evaluation in an informative manner.
To do so, we save the loss values from all training samples
through 100 generations of testing. With 10 samples per
generation, this yields 1,000 data points per parameter. Then,
we remove all samples with a loss higher than 10. Finally, the
values are reported as a distribution of successful parameter
values. Figures 8 and 9 show examples of bad training and
good training respectively.

In Fig. 8 the optimal value was 30. The distribution shows
the best values are nearly equally distributed between 20-30.
These results show no clear value and the highest peak (around
20) is a non-optimal value. A successful aspect of this training
result is it provides a focused band of values for later rounds
of training.

Figure 9 on the other hand shows a successful training run.
The optimal parameter was 60, and a tall, narrow density peak

Fig. 7. Poor training result for an optimal parameter value of 30.

is centered on that value. This plot also shows the training also
showed success on a nearby value before converging. Given
this successful run, the user can confidently select 60 as the
optimal value for further training.

Fig. 8. Poor training result for an optimal parameter value of 30.

Fig. 9. Successful training result for an optimal parameter value of 60.



B. Neural Network Optimization

We also experimented with our GA framework with a neural
network. The neural network we used was a simple multi-layer
perceptron model with two hidden layers. The first hidden
layer had 200 hidden units and the second hidden layer had
100 hidden units. The task for the neural network is hand-
written digit classification on the UCI Optical Recognition of
Handwritten Digits Data Set. The two parameters we used GA
to optimize are the learning rate and the momentum for the
SGD optimizer. Each set of generated hyper-parameters are
evaluated by training the NN with them for 100 epochs and
calculating the testing accuracy with the trained model. The
loss is obtained by subtracting the testing accuracy with 1.
We were able to observe that our GA algorithm consistently
improved the testing accuracy of the trained models. In Fig.
10, we can see that the loss dropped monotonically within the
first 5 generations and then converged to a quasi-steady state
after that.

Fig. 10. MLP on UCI hand-written digits dataset.

In this experiment, we also plotted the density graphs for
each of the hyper-parameters. In Fig. 11 we can see that
the generated learning rate parameter peaked around 0.002
which is close to the recommended value. In Fig. 12, we can
see that the generated momentum peaked around 0.8 which
is close to the recommended value of 0.9. These results are
impressive because the initial populations for the parameters
were generated within the range of 0-1 without the use of
domain knowledge.

We extended this testing to optimize discrete hyperparame-
ter value sets. Hyperparameters that could be discrete include
the number of nodes per layer, the number of layers, the type
of activation function, etc. Instead of reporting the success of
these values as a distribution, the results show a bar chart of the
values that produce successful results. Repeating the previous
optimization problem with the number of nodes, activation
function, and the number of layers produces Figs. 13 and 14.
The loss for this setup is similar to Fig. 10 and shows the
system can optimize at least 5 hyperparameters in a non-trivial
environment.

Analyzing the results shows a network with three levels and
25 nodes per layer is most likely to produce adequate results.

Fig. 11. Training result for MLP learning rate

Fig. 12. Training result for MLP momentum

Fig. 13. Distribution of successful values for the number of nodes per layer.

The networks with 100 nodes per layer also performed well.
This test also performed an optimization for the activation



Fig. 14. Distribution of successful values for the number of layers.

function between the tanh function and the sigmoid function.
However, only the tanh function converged to an adequate loss
value. Consequently, the plot is not displayed. Though these
plots do not show relationships between the hyperparameter
values, they do inform the user of the more successful values
to achieve convergence.

C. Reinforcement Learning Optimization

The other experiment that we conducted was learning hyper-
parameters for the proximal policy optimization algorithm in
the cart-pole environment. We picked the learning rate and the
maximum value for the gradient clipping as the 2 parameters to
learn for this experiment. We initialized the initial population
with Latin hypercube sampling and set the range for both
parameters to be 0-1. The GA algorithm setup used 10 samples
per generation. For each generation, the loss of each sample
was calculated by learning a policy with generated hyper-
parameters and replaying the learned policy in a cart-pole RL
environment. We ran the algorithm for 20 generations both
with and without neural network optimization.

The performance of the GA does not always return good
results without the ML approximation. It was found that the
GA could converge on optimal solutions, within 12 runs, only
60 percent of the time. Figure 15 shows an example of a
failed run. When solutions were found, it took on average 9
generations to get a loss of 0 once. When the neural network is
introduced, the GA found a loss of 0 every single time during
testing. It also found an increased number of losses lower
than when compared to only using a GA. Figures 16 and 17
shows the different between using the ml approximation for
Reinforcement Learning Optimization. Figure 16 converges
quicker and finds more parameters that return a loss of zero.
This same behavior can be seen in Fig. 17 but converges slower
with fewer parameters returning a loss value of zero.

Using the ML approximation, the algorithm returned good
results for the RL environment. The learned hyper-parameter
from this particular run was 0.0035 for the learning rate and
0.55 for the maximum value for the gradient clipping. The

Fig. 15. Cart-pole without ML approximation, failed run

Fig. 16. Cart-pole with ML approximation

Fig. 17. Cart-pole without ML approximation

recommended parameter set from the RL library is 0.00025
for the learning rate and up to 0.5 for the gradient clipping.



The distribution of valid parameters over 50 iterations is shown
in Figs. 18 and 19.

Despite the GA having no domain knowledge to guide
its parameter search, the calculated parameters converged
close to the recommended values. The similarity between the
recommended values and the calculated values further validate
the algorithm’s performance.

Fig. 18. Cart-pole distribution for the parameter learning rate 50 generations

Fig. 19. Cart-pole distribution for the parameter Max Grad Norm 50
generations

This system also had the advantage of providing initial
results very quickly. Figures 20 and 21 shows similar results
to Figs. 18 and 19 but with only 10 generation compared to
50.

Fig. 20. Cart-pole distribution for the parameter learning rate 10 generations

Fig. 21. Cart-pole distribution for the parameter Max Grad Norm 10
generations

V. ETHICS ANALYSIS

Many ethical concerns relating to artificial intelligence and
machine learning focus on data collection and distribution,
considerations in training complex models, and the application
and deployment of trained models. This work presents a
generic training tool that is both data source and application
agnostic. Accordingly, the ethical considerations for this work
center on the ethical training of complex machine learning
models. Within this realm, our work applies to two specific
concerns: reducing the carbon footprint of training ML models
and the black-box nature of complex machine learning.

The purpose of this work is to reduce the time and en-
ergy used to optimize hyperparameters in model training. As



such, the intended outcome aligns with the ethical concern
of excess energy consumed by ML development. Applying
hyperparameter optimization on a wide scale holds potential
benefits in alleviating, but not eliminating, the concerns of the
AI carbon footprint. As such, the work in this paper reflect
ethical behavior as it relates to efficient model training.

Interpreting machine learning training and actions is the
second major area of concern for this work. Increasing scrutiny
has arisen in knowing what an ML model represents, and
understanding why/how an ML model maps inputs to actions.
This field resembles a major ethical concern with this work. By
employing a hyperparameter optimization tool, inexperienced
users may create a dependence on ease of use tools. Prolonged
dependence could naturally increase ignorance by stunting the
development of domain knowledge. A second related problem
is optimizing hyperparameters for high variance environments.
In these settings, a highly non-optimal hyperparameter set
could mistakenly be reported as the optimal solution. Users
with limited domain knowledge have poor intuition for the
quality of hyperparameters, and would not know if the training
potentially failed.

We combat this issue by reporting a distribution of success-
ful hyperparameter values, not the parameter set that produced
the lowest cost. Using this method, the user increases their
domain knowledge each time they perform a hyperparameter
search. Then, the user has better intuition as to the quality of
a reported parameter set by comparing the parameter values to
the distribution of successful parameter values. If the returned
parameters fall within a region of the distribution with a high
density of successful runs, the user has higher trust in the
quality of the solution. If the values diverge significantly from
the distribution, the user can visualize the discrepancy and
adjust or retrain the values accordingly.

VI. CONCLUSION

In this project, we have created an environment agnostic
genetic algorithm framework for obtaining the optimal hy-
perparameters. The effectiveness of our framework has been
validated and proven in three different environments, a deter-
ministic number guessing, RL cart pole, and NN handwritten
digit classification. We have shown promising results in all
three of the environments as shown in the results section. We
have shown that our GA framework was able to converge to
near-optimal parameters despite initializing the samples with-
out the use of domain knowledge. Additionally, we have come
up with the novel approach of approximating task environment
with a neural network to obtain better results faster. Overall,
our GA framework showed superior performance than random
sampling regardless of the tasks.

VII. FUTURE WORK

This work proposes and validates a general hyperparameter
optimization framework without performing a formal analysis
of the system. Now that the framework is functionally vali-
dated, future work should focus on formalizing the variance
and lower-bound performance of the system. Performing an

academically rigorous analysis of the framework will validate
the system beyond the multiple successful experiments shown
throughout this paper.

A second area of future work should further explore the
invasive species concept. The hyperparameter space approx-
imator uses a two-layer neural network with 100 nodes per
layer. Experimenting with a variety of machine learning algo-
rithms introduces a rich area of exploration. Algorithms that
may perform well in this sphere include decision forests (DFs),
support vector machines (SVMs), Gaussian processes (GPs),
different neural network architectures, and different neural
network paradigms (convolutional neural networks, recurrent
neural networks, etc). These algorithms could better approx-
imate the hyperparameter loss space in different application
areas. The factors that could be explored include the amount
of available loss data, the variance of the training space, and
the computational complexity overhead of the parallel training.
Further exploring the performance of the ML approximator in
this space offers further room for future work.



REFERENCES

[1] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. J. Mach. Learn. Res., 13
(null):281–305, February 2012. ISSN 1532-4435.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

[3] Vijay Chahar, Sourabh Katoch, and Sumit Chauhan. A
review on genetic algorithm: Past, present, and future.
Multimedia Tools and Applications, 10 2020. doi: 10.
1007/s11042-020-10139-6.

[4] Qiong Chen, Mengxing Huang, Qiannan Xu, Hong-
Ming Wang, and J. Wang. Reinforcement learning-
based genetic algorithm in optimizing multidimensional
data discretization scheme. Mathematical Problems in
Engineering, 2020:1–13, 2020.

[5] Marc Claesen and Bart De Moor. Hyperparameter search
in machine learning, 2015.

[6] Kaleigh Clary, Emma Tosch, John Foley, and David
Jensen. Let’s play again: Variability of deep reinforce-
ment learning agents in atari environments, 2019.

[7] Boxin Guan, Changsheng Zhang, and Jiaxu Ning. Edga:
A population evolution direction-guided genetic algo-
rithm for protein-ligand docking. Journal of computa-
tional biology : a journal of computational molecular cell
biology, 23(7):585—596, July 2016. ISSN 1066-5277.
doi: 10.1089/cmb.2015.0190. URL https://europepmc.
org/articles/PMC4931765.

[8] G. Hinton. A practical guide to training restricted
boltzmann machines. Neural Networks: Tricks of the
Trade, pages 559–619, 2012.

[9] John H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1992. ISBN 0262082136.

[10] Khalid Jebari. Selection methods for genetic algorithms.
International Journal of Emerging Sciences, 3:333–344,
12 2013.

[11] Jinn-Tsong Tsai, Jyh-Horng Chou, and Tung-Kuan Liu.
Tuning the structure and parameters of a neural network
by using hybrid taguchi-genetic algorithm. IEEE Trans-
actions on Neural Networks, 17(1):69–80, 2006. doi:
10.1109/TNN.2005.860885.

[12] Joon-Yong Lee, Min-Soeng Kim, Cheol-Taek Kim, and
Ju-Jang Lee. Study on encoding schemes in compact
genetic algorithm for the continuous numerical problems.
In SICE Annual Conference 2007, pages 2694–2699,
2007. doi: 10.1109/SICE.2007.4421447.

[13] M. D. McKay, R. J. Beckman, and W. J. Conover.
Comparison of three methods for selecting values of
input variables in the analysis of output from a com-
puter code. Technometrics, 21(2):239–245, 1979. doi:
10.1080/00401706.1979.10489755. URL https://doi.org/
10.1080/00401706.1979.10489755.

[14] S. Mikami and Y. Kakazu. Genetic reinforcement

learning for cooperative traffic signal control. In Pro-
ceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational
Intelligence, pages 223–228 vol.1, 1994. doi: 10.1109/
ICEC.1994.350012.

[15] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evo-
lutionary algorithms for reinforcement learning. Jour-
nal of Artificial Intelligence Research, 11:241–276, Sep
1999. ISSN 1076-9757. doi: 10.1613/jair.613. URL
http://dx.doi.org/10.1613/jair.613.

[16] Kumara Sastry. Evaluation-relaxation schemes for ge-
netic and evolutionary algorithms. Master’s thesis, Uni-
versity of Illinois at Urbana-Champaign, 6 2002.

[17] Adarsh Sehgal, Hung Manh La, Sushil J. Louis, and
Hai Nguyen. Deep reinforcement learning using genetic
algorithm for parameter optimization, 2019.

[18] G. K. Soon, T. T. Guan, C. K. On, R. Alfred, and
P. Anthony. A comparison on the performance of
crossover techniques in video game. In 2013 IEEE
International Conference on Control System, Computing
and Engineering, pages 493–498, 2013. doi: 10.1109/
ICCSCE.2013.6720015.

[19] Ravi Srivastava. Time continuation in genetic algo-
rithms. Master’s thesis, University of Illinois at Urbana-
Champaign, 3 2002.

[20] Emma Strubell, Ananya Ganesh, and Andrew McCallum.
Energy and policy considerations for deep learning in
nlp, 2019.

[21] Felipe Petroski Such, Vashisht Madhavan, Edoardo
Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Deep neuroevolution: Genetic algorithms are a compet-
itive alternative for training deep neural networks for
reinforcement learning, 2018.

[22] David J. J. Toal, Neil W. Bressloff, and Andy J. Keane.
Kriging hyperparameter tuning strategies. AIAA Journal,
46(5):1240–1252, 2008. doi: 10.2514/1.34822. URL
https://doi.org/10.2514/1.34822.

[23] Jiquan Wang, Mingxin Zhang, Okan Ersoy, Kexin Sun,
and Yusheng Bi. An improved real-coded genetic al-
gorithm using the heuristical normal distribution and
direction-based crossover. Computational Intelligence
and Neuroscience, 2019:1–17, 11 2019. doi: 10.1155/
2019/4243853.

[24] A. Wicaksono and Ahmad Afif Supianto. Hyper pa-
rameter optimization using genetic algorithm on machine
learning methods for online news popularity prediction.
International Journal of Advanced Computer Science and
Applications, 9, 2018.

[25] Xueli Xiao, Ming Yan, Sunitha Basodi, Chunyan Ji, and
Yi Pan. Efficient hyperparameter optimization in deep
learning using a variable length genetic algorithm, 2020.

[26] Steven R. Young, Derek C. Rose, Thomas P. Karnowski,
Seung-Hwan Lim, and Robert M. Patton. Optimizing
deep learning hyper-parameters through an evolutionary
algorithm. In Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments,

https://europepmc.org/articles/PMC4931765
https://europepmc.org/articles/PMC4931765
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
http://dx.doi.org/10.1613/jair.613
https://doi.org/10.2514/1.34822


MLHPC ’15, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450340069. doi:
10.1145/2834892.2834896. URL https://doi.org/10.1145/
2834892.2834896.

https://doi.org/10.1145/2834892.2834896
https://doi.org/10.1145/2834892.2834896

	Introduction
	Related Works
	Tuning with Sampling Techniques
	Tuning with Learning
	GAs and RL
	Improving GA Performance
	Position Relative to Related Work

	Methods
	Genetic Algorithm
	Initial Population
	Crossover
	Mutation
	ML Approximation

	Results
	Deterministic Number Guessing
	Neural Network Optimization
	Reinforcement Learning Optimization

	Ethics Analysis
	Conclusion
	Future Work

