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Abstract 

This paper explores the ability of neural networks to predict stock change. Both artificial 

neural networks and convolutional networks perform brute force training to predict the daily 

stock value change of Apple Inc. The training sequence cycles the hyperparameters of 

activation functions, learning rate, mini-batch size, layer depth, and input size. Results show 

this training method produces networks with an average prediction accuracy of 65%. The best 

performing network correctly predicts stock value at 75%. Trend analysis is done on the 

hyperparameters to reduce future training time. Future work will include implementing 

network ensembles and optimizing the amount of training data provided to the networks. 

I.Introduction 

redicting stock values from a purely mathematical is a challenge due to seemingly stochastic behavior in the stock 

data. Analyzing stocks to predict price changes and yield profit involves highly technical analysis methods. The 

study of finance achieves these predictions by measuring various characteristics of stocks including volatility, 

public feedback, and market insight. Implementing neural networks to stock prediction eliminates the need for 

expertise by replacing the expertise with extensive training procedures. Successfully training a neural network would 

provide novice investors with another tool to make well-informed portfolio decisions. This document will focus on 

predicting Apple Inc. stock using both traditional artificial neural networks (ANNs) and convolutional neural networks 

(ConvNets). The networks will be trained to predict whether or not a stock will increase between its opening and 

closing values. 

II.Methods 

A. Tools and Third-Party Libraries 

This project makes use of the following software and third-party libraries: 

Python 2.7.15 

Numpy 1.15.4 

TFLearn 1.11.0 

Fix_Yahoo_Finance 0.0.22: Yahoo Finance is used to collect historical stock data. The Yahoo Finance API lost 

functionality May 15, 2017. Since then, developers created a new API called 

Fix_Yahoo_Finance to allow legacy code to function without modification. This API 

downloads stock data given a stock ticker, a start date, and an end date. The 

downloaded package holds a record of the opening and closing prices of different 

stock. The READ.ME file includes instructions for downloading this API. 

B. Data Preparation 

The training routines for this project used two date ranges for the stock data. The first range included data from 

May 1, 2017 to Dec 31, 2017. The second data range spanned from May 1, 2016 to Dec 31, 2018. The first data range 

was chosen from the results during initial testing. The project proposal stated the testing window would include a year 

of data. This size of input data was altered because the first successful training result occurred when changing the 

dates. The 7-month data range proved ineffective when testing the networks with input sizes greater than 50. Large 

input sizes reduced the number of testing samples. Increasing the range of stock data resolved this by collecting more 
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data. The This project obtains the stock data by finding the difference between the opening value and the closing value 

and normalizing the result. The algorithm is the following: 

 

FUNCTION: Obtain Stock Data 

inputData = [] 

For each day in the stock data 

 Change = openValue[day]-closingValue[day] 

 Append Change into inputData 

maxValue=MAX(MAX(inputData),-MIN(inputData)) 

For each Change in inputData 

Change = Change/maxValue 

 

 Preprocessing the data may be implemented using signal analysis, such as a Fourier transform, in order to extract 

features in the case of poor initial results. 

Next, the data must be split into training and testing segments, along with the corresponding target values. This is 

done by creating a sliding window along the inputData array. The length of the sliding window represents the number 

of days used as input to the NN. This project will search for an optimal size for this window. Only sizes corresponding 

to perfect squares will be considered to allow the ConvNets to use a square window. The window looks like the 

following for a window size of four: 

         

 

         

 

         

 

         

Fig. 1. Graphical representation of NN data collection 

 

The blue cells represent the data and the red cell represents the target value. After the inputData array is segmented, 

the data is split using a 7/10 ratio between training and testing data.  

C. Network Architectures 

The presented results include network architectures with one to three layers. Initial testing produced results 

equivalent to guessing when using deep (more than three layer) networks. Reducing the network depth yielded training 

cost improvements after as few as five training epochs. Each layer for a given network will employ a single activation 

function. Table 1 shows all of the hyperparameters that will be cycled during testing. Some parameters were eliminated 

or condensed during testing. This was due to eliminate parameters that did not produce accurate results and reduce 

training time. 

 

Table 1. Hyperparameters used to test the ConvNets and ANNs 

Hyperparameters Convolutional Networks Artificial Neural Networks 

Activation Functions Tanh, Sigmoid, Linear, ReLu 

LR 0.1, 0.01, 0.001, 0.0001 

MBS 10, 20, 50 

Layer Depth 5, 10, 15, 20 10, 20, 50, 100, 200, 500 

 

Similarly, initial testing produced the best results when using a window size smaller than 100 days. This difficulty 

likely occurs due to the volatility of the stock market. Stocks tend to behave differently over short periods of time. As 

such, using large input windows may incorporate several segments of behavior and fail to teach the network. The 

networks for this project were trained using windows the sizes of the perfect squares from 4→100. 
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D. Training Routine 

The network architectures will train using a brute-force method to test all combinations of the hyperparameters. 

Due to the computationally intensive approach, testing for the three-layer networks will be done in segments to reduce 

strain on system resources. Each network will train for 60 epochs. For each network, the algorithm will print the 

progress in the training regimen, train the network, calculate the accuracy of the trained network on the testing data, 

and persist the network if it produces the highest accuracy. The pseudocode of the training is as follows: 

 

For all combinations of the hyperparameters 

 Print training statistics and remaining time 

 Train network 

 Calculate networkAccuracy on testData 

 If networkAccuracy > bestAccuracy 

  Save current network as bestNetwork 

III.Results and Discussion 

This section reviews the results of the network. In total, the results reflect 30,000 trained networks using the given 

parameters. The results are broken down by the effectiveness of each parameter. The recorded accuracies from the 

best networks range from 58-75%. Ten networks produced a testing accuracy over 70%. Repeating the training 

sessions shows the inconsistency of neural networks. When repeating a training session, the next version of testing 

unanimously produces a network with different hyperparameters. This behavior likely occurs due to the random 

initialization of the networks’ weights and biases. The Appendix contains the results for every training session. 

E. Training Window Size 

The training window is the number of input cells into the networks. This value represents the number of previous 

days used to predict the following day’s stock behavior. Figure 2 shows the best accuracies for each window size. 

 

 
Fig. 2. Testing accuracies as a function of window size. 

 

As shown in Fig. 2, the networks performed best when using a window size of 25. This general accuracy stays 

relatively constant with window sizes of 36 and 49. Figure 3 shows the distribution of the networks that exceeded 

70% in testing accuracy. by the window size. Note the average network performance and the number of accurate 

networks follow a similar trend. 
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Fig. 3. Number of networks exceeding 70% testing accuracy for each window size. 

 

F. Activation Functions 

The functions employed in testing include ReLu, sigmoid, linear, and tanh. Multiple functions were removed when 

training the three-layer ConvNets. The sigmoid and tanh functions were removed due to poor performance in the one-

layer and two-layer networks. 

 
Fig. 4. Distribution of activation functions for the different network architectures. 

 

The data shows the linear and ReLu activation functions are the most consistent in producing the most accurate 

network. The sigmoid and tanh functions perform poorly in the convolutional networks. The frequency trend stays 

consistent in the number of activation functions that produced networks with a greater than 70% testing accuracy. 

G. Learning Rate 

The testing routines in this project cycled through four different learning rates. These included 0.1, 0.01, 0.001, 

and 0.0001. Figure 5 shows the distribution of the learning rates which resulted in the best network for each training 

routine. Note, the 3-layer ConvNets did not use 0.1 or 0.0001 due to poor results when testing the 1-layer and 2-layer 

ConvNets. 
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Fig. 5. Distribution of the best learning rate for the trained networks. 

 

 The results show starkly different behavior between ConvNets and ANNs. The ConvNets produced better accuracy 

when using a learning rate between 0.01-0.001. The ANNs most frequently performed best when using 0.1 for the 

learning rate. The networks recording an accuracy above 70% exhibits yet another unique behavior. The best 

performing networks used a nearly even spread between learning rates of 0.01, 0.001, and 0.0001. Analyzing the data 

shows the four ANNs achieving 70% accuracy used a learning rate of 0.0001. The Conv Net learning rates also show 

a clear divide with regards to memory size. The ConvNets with a memory less than 40 all use a learning rate of 0.01; 

above a memory of 40, all of the learning rates are 0.001. 

H. Mini-Batch Size 

The mini-batch sizes (MBS) used in training include 10, 20, and 50. All three options were used when training the 

three ANN structures. Training for the 3-layer Conv Net used only 10 and 20 due to low accuracy from 50 when 

training the 1-layer and 2-layer ConvNets. Figure 6 shows the MBS distribution for the trained networks. 

 

Fig. 6. Mini-batch size distribution for the trained networks. 

Results from the training show the most accurate functions to be 20, 10, and 50. The ConvNets performed best 

with a MBS of 50 only once.  The ANNs’ results show a near even success rate between a MBS of 10 and 50; a MBS 

of 20 produced near double the successful networks than the other MBS options. Analysis of the 70% accurate 

networks shows a MBS trend similar to the ANNs with the MBS of 20 outperforming the other two MBS options 

combined.  

Analyzing the MBSs in the best networks shows distinct trends between the network styles and the number of 

input nodes. All but one of the ANNs with a testing accuracy above 70% used an MBS of 20. The ConvNets used a 



 6 

1:1 ratio of 10 and 20. All of the ConvNets with less than 30 input nodes use an MBS of 10. The ConvNets with more 

than 30 input nodes use an MBS of 20. 

 

I. Nodes Per Layer 

Different values for the nodes per layer were used for the ConvNets and the ANNs. The ConvNets used depths 

between 5 and 20; the ANNs used depths between 10 and 500. Analyzing the data shows no apparent correlation 

between the accuracy and the number of nodes for most of the trained networks. Close analysis of the networks with 

an accuracy higher than 70% show the layer depths are monotonically increasing for each network. Figure 7 shows 

this behavior. 

 
Fig. 7. Monotonically increasing layer depths in the 70%+ networks 

 

IV.Conclusion 

Simple neural networks show promising results in prediction stock data. Using brute force training procedures, 

networks average 64% accuracy on training data. Analysis of the trained network data shows strong trends in the 

effectiveness and ineffectiveness of the hyperparameters. Table 2 shows the more effective hyperparameters. The data 

showed not apparent correlation between the layer depths and testing accuracy. 

 

Table 2. Most accurate hyperparameters from trends in the trained networks 

Hyperparameters Convolutional Networks Artificial Neural Networks 

Activation Functions ReLu, Linear ReLu, Linear, Tanh 

LR 0.01, 0.001 0.1 

MBS 10, 20 10, 20, 50 

 

Future work on neural networks in stock prediction may employ testing various techniques. The first parameter to 

optimize would be the amount of data used to train the networks. The networks with a large number of input nodes 

performed poorly when trained on 7 months of data. Similarly, the networks with less input nodes performed poorly 

when trained on 19 months of data. Thus, further work may be done in finding an optimal size of training data with 

respect to the network’s input nodes. 

Another area of future work will involve network ensembles. A network ensemble uses multiple networks to 

predict the same value. The program would then return the highest voted prediction. Previous studies in other 

applications show ensembles typically improve neural network prediction accuracy. To create an ensemble, the 

prediction algorithm would consider the predictions of all the networks with a testing prediction above 70%. 
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V.Appendix 

Table 3. One-layer ConvNets training results 

Memory Accuracy Nodes 1 Function MBS LR 

4 0.6 5 linear 20 0.001 

9 0.714 5 relu 10 0.01 

16 0.533 5 sigmoid 10 0.1 

25 0.636 15 linear 20 0.01 

36 0.636 10 tanh 50 0.01 

49 0.703 20 relu 20 0.001 

64 0.565 5 linear 20 0.01 

81 0.602 15 tanh 20 0.01 

100 0.619 20 linear 20 0.001 

  

 

Table 4. Two-layer ConvNets training results 

Memory Accuracy Nodes 1 Nodes 2 Function MBS LR 

4 0.6 20 5 linear 10 0.01 

9 0.612 10 5 relu 10 0.01 

16 0.617 20 10 linear 10 0.001 

25 0.705 5 15 linear 10 0.01 

36 0.659 10 15 relu 10 0.01 

49 0.757 5 15 linear 20 0.001 

64 0.563 5 5 linear 10 0.01 

81 0.641 20 15 tanh 10 0.001 

100 0.598 10 20 relu 10 0.01 

 

 

Table 5. Three-layer ConvNets training results 

Memory Accuracy Nodes 1 Nodes 2 Nodes 3 Function MBS LR 

4 0.58 15 5 10 relu 20 0.01 

9 0.633 10 5 10 relu 20 0.001 

16 0.638 10 10 10 relu 20 0.001 

25 0.727 5 10 17 relu 10 0.01 

36 0.707 5 5 5 linear 20 0.01 

49 0.676 5 5 10 linear 10 0.001 

64 0.611 10 17 5 linear 20 0.01 

81 0.621 17 10 10 linear 20 0.01 

100 0.598 10 10 17 relu 10 0.01 
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Table 6. One-layer ANN training results 

Memory Accuracy Nodes 1 Function MBS LR 

4 0.6 200 tanh 10 0.1 

9 0.653 10 sigmoid 20 0.1 

16 0.596 20 sigmoid 10 0.1 

25 0.705 500 linear 50 0.0001 

36 0.61 500 linear 50 0.1 

49 0.622 500 linear 10 0.1 

64 0.63 100 relu 20  

81 0.704 500 linear 20  

100 0.608 100 linear 10 0.1 

 

 

Table 7. Two-layer ANN training results 

Memory Accuracy Nodes 1 Nodes 2 Function MBS LR 

4 0.58 15 200 relu 20 0.001 

9 0.612 15 15 relu 50 0.001 

16 0.615 200 15 tanh 20 0.1 

25 0.727 200 200 tanh 20 0.0001 

36 0.634 15 15 linear 50 0.0001 

49 0.625 200 50 tanh 10 0.1 

64 0.625 15 15 relu 20 0.001 

81 0.612 15 15 linear 10 0.1 

100 0.667 15 15 sigmoid 10 0.001 

 

 

Table 8. Three-layer ANN training results 

Memory Accuracy Nodes 1 Nodes 2 Nodes 3 Function MBS LR 

4 0.62 15 15 15 sigmoid 50 0.1 

9 0.633 15 200 15 relu 20 0.1 

16 0.66 15 75 200 tanh 10 0.1 

25 0.705 75 75 200 tanh 20 0.0001 

36 0.659 15 200 200 tanh 50 0.1 

49 0.622 15 75 200 relu 20 0.1 

64 0.656 15 15 15 relu 20 0.001 

81 0.621 200 75 200 tanh 50 0.1 

100 0.598 15 75 200 tanh 20 0.1 

 


