Planning for Wet Road Avoidance with an
Ackermann Vehicle

Bryson Jones, Evan Schindewolf, Braden Eichmeier, Shaun Ryer
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
Email: {bkjones, eschinde, beichmei, sryer} @andrew.cmu.edu

Abstract—Weather related adverse road conditions can be fatal
to passenger traffic and costs logistics companies billions of
dollars in delays annually. Modern vehicle safety systems are
almost purely reactive, in that they only mitigate the damage
after losing control, and thus are not able safely traverse or avoid
hazardous patches of road by planning a traversal method ahead
of time. Here, we propose a proactive planning-based solution
which uses forward-looking information to mitigate the risk of
crashing due to wet road conditions. In order to demonstrate
this capability, we present results from a variety of wet road
conditions in simulation as well as physical demonstration on an
autonomous 1/5th scale vehicle.

I. INTRODUCTION

Reactive safety measures such as traction control and air
bags have reduced road accident fatalities since their intro-
duction. However, every year, 5,000 people die and more than
400,000 are injured in weather-related accidents on US roads
[1]. Similarly, the trucking industry loses $3.5 billion due to
weather-induced delays [2]. Reactive safety measures cannot
eliminate these losses where proactive systems would be able
to, given sufficient warning. In this paper we describe the
planning algorithm for the ADAPT system, an end to end
software pipeline to perceive and navigate through adverse
road conditions for a 1/5-scale ackermann vehicle. A computer
vision system scans the road conditions in front of the vehicle
for water. These regions of water, or puddles, are segmented
and converted into a top-down grid representation of the road.
This paper focuses on developing a planner to effectively
navigate through this 2D grid environment. Maximum velocity
for the vehicle is 4 m/s. Analysis of the planning complexity
shows the planner must run within 0.5 seconds. To this end,
we propose implementing a motion primitive-based A* search,
loosely based on recent work in lattice planners [3], to navigate
through the road environment.

II. APPROACH
A. Map Generation

The map of the environment is generated by taking in a 1D
row-major map vector, which is an occupancy grid where the
values represent confidence of a wet-area or puddle to be in
that cell. This occupancy grid data is assumed to be provided
information for the implementation purposes of this method.
The cell size is specified to be 0.1 meters, with the map being

of variable height and width bounds depending on the vector
size.

Along with this map vector, a set of waypoints is provided,
which act as the features to define the road that the robot
traverses. The total road width is set to be 1.5m, and every
cell outside of that width from the segments that connect the
provided waypoints is marked as inaccessible, to prevent the
robot from planing off-road trajectories.

B. Heuristic and Cost Computation

The heuristic computation is based on the time to move to
each cell in the map from the goal. To get the minimum time
to arrive at each cell, a 2D A* method was used. The A* was
composed of a weighted 8-connected wavefront method that
started from the target and expanded in a breadth-first manner
starting with the four adjacent cells and then the four diagonal
cells until the entire map was filled. Dry ground traversal uses
the maximum vehicle velocity of 4 m/s to compute the time
cost. Puddle traversal assumes a velocity of 2 m/s.

C. Motion Primitive Generation

Whenever the planner expands a node in the search pro-
cess, the set of next possible states is drawn from a set of
pre-generated motion primitives. Primitives are pre-generated
using a set of possible steering angles and a set of velocities.
To generate a primitive, a fixed steering angle drives from the
current velocity to each of the possible velocities for a fixed
time interval. The entire motion primitive set consists of all
pairs of starting velocity, ending velocity, and steering angle.
The set of available primitives is selected from a dictionary
of primitive sets with the vehicle’s current velocity as the
key. Figure [I] shows an example motion primitive set with
11 steering angles and 4 velocities.

After selecting the available set of primitives, the primitives
are transformed into the vehicle frame and checked for safety.
A primitive is deemed unsafe if any part of the primitive path
navigates outside of the map boundaries or crosses adverse ter-
rain at an excessive speed. A new search node is produced for
each remaining primitive and the search iteratively continues
until the goal is reached.

D. Real-time Modifications

Running a planning algorithm on hardware requires several
modifications due to noisy sensor data and imperfect path
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Fig. 1. Example motion primitive visualization.

execution. To adapt to these situations, we make two adjust-
ments to the A* algorithm. The first adjustment is a maximum
planning time allotment. By setting a maximum planning time,
the algorithm regularly receives updated plans even if the
planning does not reach the goal. A second adjustment is
implementing a maximum distance horizon. The algorithm
ends by selecting the path with the lowest heuristic value once
either horizon condition is met.

III. EXPERIMENT ANALYSIS
A. Simulation

The first set of testing used a python environment to visu-
alize the vehicle’s motion through the environment. Figures
show the final path in two different environments. The
planning time for both maps was about 0.3s. In Fig.
the environment was designed to force the car through two
large puddles, and drive around several others. In this setting,
the vehicle experienced heavy oscillations when avoiding the
puddles towards the end of the road. This led to producing a
new motion primitive set with more possible steering angles.
Figure 3] shows the results on a new map with a single puddle
and more complex road layout. The plan shows effective
behavior in minimizing the path through the puddle, and
cutting the distance in the sharp turn. The oscillatory behavior
in the previous map was also alleviated. However, there is
still a slight oscillation that occurs due to the restricted set of
primitives.
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Fig. 2. Straight line road with cluttered puddle set shows.

B. Hardware

The system hardware consisted of a Nvidia Jetson AGX
Xavier inside an enclosure on a 1/5 scale remote control

Fig. 3. Large road environment with a single puddle.

camera car, Figure [] Software infrastructure included a ROS
architecture of nodes which provided planning with a live or
pre-generated puddle map and the current state of the vehicle,
and then passed the resulting trajectory on to the controls
system. See Final Presentation in Supplemental Materials for
video demonstration.

Fig. 4. Vehicle platform used to test the ADAPT planner.

IV. CONCLUSION

In this paper, we presented a planning algorithm for au-
tonomously navigating wet road conditions. In order to demon-
strate this capability we validated the ADAPT planner in both
simulation and on a physical autonomous vehicle over a range
of different scenarios. These exhibited that the ADAPT planner
can be used to plan safe trajectories that avoid or navigate wet
road conditions all but eliminating the risk of accidents due
to hazardous road scenarios. [
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