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1) System Diagram 

 

Fig. 1: Software pipeline for the quadrotor simulation. 

 

2) Hover Performance 

 

Figure 2 shows the error associated with simulating the hover scenario detailed in the problem 

statement. The waypoint changes at seconds 2, 4, 6, and 8 as indicated by the vertical blue lines 

in the plots. When achieving each new goal, the quadrotor shows a sinusoidal rise. This rise 

phenomena occurs due to the oscillations in achieving the desired attitude in the inner loop. The 

quadrotor achieves the new waypoint approximately one second after receiving the goal and 

oscillates around the point until the new goal is received. 



 

Fig. 2: Error plots showing the position and orientation errors for hover. 

 

Adjusting the proportional and derivative gains alters the convergence and oscillation of the 

system. Increasing the proportional gain makes the system react more aggressively, which can 

lead to divergence if Kp is increased too much. Increasing the derivative gain dampens the 

oscillations in the system. Dividing the proportional gain by 1.3 resulted in a more smooth 

response as shown in Fig. 3. 

 

Fig. 3: Reducing the derivative gain causes the system to better converge to the waypoints. 

 



Modifying the gains for the attitude control behaves similarly with adapting to the attitude 

commands. Modifying the gains showed a good convergence occurs when increasing both the 

proportional and derivative gains. This is logical because it makes the inner loop respond faster 

than the outer loop and reduce dynamic coupling. Figure 4 shows the error results from 

multiplying the inner loop proportional and derivative gains by 2 and 1.5 respectively. 

 

Fig. 4: Increasing the inner loop gains gives quick attitude convergence and smooth position 

convergence. 

 

3) Line-tracking Performance 

Figures 5 and 6 show the position and error plots for the tracking controller. The top-right figure 

in Fig. 5 shows the system performs well win achieving the desired states without oscillations. 

However, there is a small delay in achieving the desired states when beginning takeoff or 

descent. 



 

Fig. 5: Position plots for the line tracking behavior in response to a takeoff, hover, and landing 

sequence. 

 

 

Fig. 6: Error plots for the takeoff, hover, and landing sequence shown in Fig. 5. 

 

Modifying the gains to the system did not significantly alter the plots due to the already low 

error. Figures 7 and 8 show updated trajectory metrics with the proportional gains tripled 

compared to the previous figures. The largest difference is an increased delay in responding to 

the ascent phase. 



 

Fig. 7: The position tracking with increased outer loop gains shows little improvement in 

convergence. 

 

 

Fig. 8: The z-position error shows increased noise and oscillation with the increased position gain. 

 

4) State Machine 

Figure 9 illustrates the state machine I implemented in the code. There are three inputs to this 

state machine. The first is an array of times to dictate the start and end times for each behavior. 

The second input is an array of poses to define the start and end positions of each behavior. The 



final input is an array of the desired behaviors for the simulation. The time and pose arrays 

should have one more entry than the behavior array, which corresponds to each behavior 

having a start and end state. This state machine iterates through behaviors based on the time 

bounds. Once the end time has been reached, the machine iterates to the next behavior.  

 

Each behavior is defined by a unique function that precomputes the desired positions for each 

moment in time. The behaviors are defined to operate in a single unit time (1 second), then the 

state machine scales the time stamps from the behavior function to match the time bounds 

from the time array. This method makes the behaviors function independent of time scaling. 

Similar scaling is performed for the magnitude of the behaviors using the input poses. 

 

For this assignment, I created several behavior functions: hover, ascend, descend, ellipse, and 

pirouette. I also created a second implementation of this state machine for 

trajectory_planner.m to precompute the function derivatives in a similar manner. Figure 9 also 

shows the code to implement Question 3 using this state machine. 

 

 

        other = [1,1,1,1]; 

        times = [0,2,4,8,10]; 

        behavior = {@hover; @takeoff; @hover; @descend}; 

        pose1 = [0,0,0,0]; 

        pose2 = [0,0,0,0]; 

        pose3 = [0 0 1 0]; 

        pose4 = [0, 0, 1, 0]; 

        pose5 = [0 0 0 0]; 

        poses = [pose1; pose2; pose3; pose4; pose5]; 

        [points, times] = st_machine(behavior, poses, times, other); 

  

Fig. 9: Block diagram and example code for the state machine implemented to precompute 

behavior trajectories. 

 



5) Gain Selection and Tuning 

 

Table 1 shows the system’s response to a step input in both height and heading. The height step 

response and error are shown in more detail in Figs. 10 and 11 respectively. The height and 

heading responses and errors are shown in Figs. 12 and 13. 

 

Table 1:  Quadrotor system response to a step input for the height and heading 

Value 𝑴𝑷 (%) 𝒕𝒓 (s) 𝒕𝒔 (s) 𝒚𝒔𝒔 

Height 7.5 0.215 0.3 0.1 m 
Heading 0 0.38 0.44 15° 

 

 

Modifying the position controller gains shows the system is stable for 𝐾𝑃 = [40,90] and 𝐾𝑑 =

[4,10]. The system allows higher 𝐾𝑑 with higher 𝐾𝑃 values. Increasing the proportional gain 

reduces the response time but increases overshoot and ringing. Increasing the derivative gain 

substantially reduces the overshoot and settling time while having little effect on the rise time. 

Proportional and derivative gains of 65 and 11.75 result in a quick system with little overshoot. 

 

 

Fig. 10: State plots in response to a 0.1 m step input using tuned gain parameters. 

 



 

Fig. 11: Error plots in response to a 0.1 m step input using tuned gain parameters. 

 

The attitude controller gains behave differently than the position controller. For good behavior, 

the system should respond faster than the position controller. The stable range for the position 

controller is 𝐾𝑃 = [40,160]. For the derivative gain, I could only find a minimum for stability of 

18. The highest 𝐾𝑃 results in an overdamped system, thus a small 𝐾𝑑 will produce the most 

responsive system. The optimal gains for 𝐾𝑃 and 𝐾𝑑 are 160 and 18 respectively. 

 

Fig. 12: State plots in response to a 15° step input using tuned gain parameters. 

 



 

Fig. 13: Error plots in response to a 15° step input using tuned gain parameters. 

 

6) LQR Controller design and Evaluation 

a) Hover Performance 

Using an LQR controller on the hover performance, I found the system converges to the desired 

positions with little overshoot. Once attaining the desired values, the systems oscillates a 

miniscule amount around the goal state. I found rapid convergence by increasing the z-value. 

Figures 14 and 15 show the position and error plots for the system with the Q-z value at 13 and 

the Q-x value of 1. All other Q values are set to 0.2 and the R values are set to 1. 

 

Fig. 14: The LQR controller shows good convergence in both the x and z positions with little 

tuning. 



 

 

Fig. 15: The error plots show significant oscillations in the acceleration plots and smooth 

convergence in the positions. 

 

The system shows little change with alterations to the Q-z value. Increasing the value leads to 

slightly quicker convergence to the goal state. Increasing the Q-x value drastically quickens the 

x-position convergence. Doing so causes the z-position to have a steady state error of about 

20%. Halving the Q-x value similarly delays the system’s convergence to the goal positions. The 

delayed convergence also reduces the maximum z-error to within 0.5 mm. Figures 16 – 19 show 

the position and error plots for the modified Q matrix parameters. 

 

Fig. 16: Increasing the Q-x values by about 33%. The z-position error is magnified without steady 

state convergence. 



 

 

Fig. 17: The increased Q-x value amplifies the oscillations in nearly all the position plots. 

 

 

Fig. 18: Reducing the Q-x value by half causes the system to barely converge to the goal before 

iterating to the next goal point. 

 



 

Fig. 19: The error plots show the miniscule error in each of the states. 

 

The LQR controller behaved quite differently to the PD controller. The PD controller had a slow, 

oscillatory behavior to the goal states. An interesting behavior occurs in the angular and 

acceleration states using the LQR controller. There are significant oscillations as a unique 

controller is computed at each time step. The system shows better convergence with the LQR 

controller in response to a step input in hover behavior. 

 

b) Line-tracking Performance 

 

The LQR controller described in section (a) behaves similarly to the PD controller described in 

Question 3. The LQR controller lags the desired path for about 1 second before it overshoots the 

desired trajectory. At 2.5 seconds the system reconverges to the path with negligible 

oscillations.  In the descent flight, the system experiences a slight (5 cm maximum) lag with the 

desired path. There is no overshoot when converging to the descent path or the hover after 

descent. 



 

Fig. 20: The z-position tracking shows similar behavior for both the PD and LQR controllers. 

 

 

Fig. 21: Maximum error for the described LQR controller does not exceed 10 cm, and occurs 

directly after takeoff. 

 

Modifying the Q-z value shows direct effects on the system’s convergence. Increasing the Q-z 

value results in lower error. Despite this, the overshoot at the end of the ascent phase does not 

change much by increasing the Q-z value. This likely occurs due to a non-flat commanded 



trajectory. Lowering the Q-z value increases the system’s lag and overshoot. Figures 22 and 23 

show the system behavior with Q-z reduced to 5.  

 

Fig. 22: Reducing the Q-z value causes the system to experience a single overshoot of 18%. 

 

 

Fig. 23: Significant error in the relaxed LQR controller only occur in the z-position and derivative 

values. 

 

When compared to the PD controller, the LQR controller behaves and tunes similarly. The PD 

controller does allow greater flexibility in tuning the overshoot behavior of the system. On the 



other hand, tuning the LQR controller required much less time to achieve a well performing 

system. 

 

c) Gain Selection and Tuning 

 

Table 2 shows the system response to a step input in both height and heading. The LQR 

controller shows about a 20% slower rise time and settling time to the step inputs compared to 

the PD controller. The overshoot in the height tracking is reduced by about 40%. Tuning the LQR 

controller from the LQR controller described in (a) showed good results with a Q-z value of 300 

and a Q-𝜓 value of 4. Figures 24-27 show the system response to the height and heading step 

inputs. 

 

Table 2:  Quadrotor system response to a step input for the height and heading using LQR. 

Value 𝑴𝑷 (%) 𝒕𝒓 (s) 𝒕𝒔 (s) 𝒚𝒔𝒔 

Height 4.5 0.255 0.345 0.1 m 
Heading 0 0.475 0.535 15° 

 

 

Fig. 24: System response to a step input in height results in smooth convergence and 

small overshoot. 

 



 

Fig. 25: Error plots showing the system response to a step input. 

 

 

Fig. 26: Position plots for the heading step input show an oscillatory, underdamped 

convergence to the input. 

 



 

Fig. 27: Error plots for the heading step input show significant error only occurs in 𝜓, 

and 𝑎𝑧. 

 

Modifying the Q-z and Q-ψ values produces interesting results. Increasing the ψ value to 

8 causes the ψ value to converge much more rapidly. The increased gain also attenuates 

the oscillations in ψ as it approaches the goal point. After increasing ψ, the z-position 

tracking experiences a much larger overshoot than the previous controller. Increasing Q-

z produces little change in the system. Figures 28 and 29 show the system responding 

simultaneously to a height and heading step input with the Q-ψ value increased to 1.6. 

 



 

Fig. 28: State plots for the system with increased Q-ψ in response to step inputs in 

height and heading.  

 

 

Fig. 29: Error plots for the system responding to step inputs in height and heading. 

 

7) Bounded Acceleration Trajectory Generation 

 

I defined the trajectory using the polynomial in Eq. 1. I then bounded the polynomial to have a 

maximum acceleration of 3 𝑚/𝑠2. Using this strategy, the system tracks the trajectory without 



exceeding the maximum acceleration over a time scale of 4.5 seconds. The system tracks the 

trajectory well down to a time scale of 3.4 seconds. After this point, the actual trajectory 

oscillates around the desired trajectory. This occurs because the correction acceleration is too 

extreme and the bounded system over corrects in tracking the trajectory. Figures 30 and 31 

show the position and error performance plots for a time scale of 4.5 seconds. 

 

 𝑧(𝑡) = 3𝑡2 − 2𝑡3 (1) 

 

 

Fig. 30: The system successfully tracks a 9 m altitude increase without exceeding an acceleration 

of 3 𝑚/𝑠2. 

 

 



 

Fig. 31: The maximum z-position error is 4 cm. The wide lined error comes from the system 

aggressively correcting to the desired position. It is introduced in the position controller. 

 

At a time scale of 3.2 seconds the system begins to show divergence from the desired path.  

Increasing the motor constant shows slight improvement to the system. The poor performance 

occurs due to the bounded acceleration. Adjusting the motor constant will only enable the 

motors to attain the desired accelerations more rapidly, not exceed the maximum accelerations. 

Because these desired accelerations are bounded, improved motors are not expected to 

significantly improve performance. Figures 32 and 33 show the position and error plots for this 

excessive acceleration. 

 

 

 



 

Fig. 32: The system diverges from the desired path, especially during the final hover. This occurs 

because the required acceleration is much larger than the bounded acceleration (see the 

Acceleration in Z-plot). 

 

 

Fig. 33: The Z-error plot shows the divergence at the end of the trajectory. Note the Error in 𝑎𝑧 

plot remains relatively low, which shows increasing the motor constant will have little effect on 

the system performance. 

 

 

 

 



8) Elliptical Trajectory 

Figures 34 and 35 show the position and error plots for the elliptical tracking. The velocity plots 

show a commanded speed of 1 𝑚/𝑠.  This controller performs well in the startup and continuing 

ellipses. Towards the end of the final ellipse the system shows overshoot in both the x and y 

positions. The overshoot likely occurs because the system has a high position gain relative to the 

derivative gain. As the drone begins to slow at the end of its trajectory, it attempts to converge to 

both the changing velocity profile and location, which results in the slight divergence. 

 

Fig. 34: Position plots for the drone tracking the ellipse at 1 𝑚/𝑠. The system successfully tracks 

position and acceleration with only slight deviations from the desired velocity. 

 

Fig. 35: Error plots for the drone tracking the ellipse at 1 𝑚/𝑠. 



 

Reducing the velocity commands reduces the overshoot in the final ellipse. Increasing the velocity 

amplifies the overshoot (error) throughout the trajectory. The system begins to diverge when the 

commanded velocity approaches 2 𝑚/𝑠. This is because the drone must achieve accelerations larger 

than 3 𝑚/𝑠2, which exceed the error bounds of the drone and cause it to diverge. Figures 36 and 37 

show the position and error plots for a commanded velocity of 1.75 𝑚/𝑠. 

 

Fig. 36: Increasing the velocity during ellipse tracking shows the system diverges near the 

endpoints of the ellipse. This occurs due to the excessive acceleration during sharp turns. 

 

Fig. 37: The maximum position error occurs in the final turn of the third ellipse. 



 

Figure 38 shows a cumulative error plot for the system. After creating the total cumulative error 

plot, I normalized the plots by the number of points per second in order to accurately compare 

different simulations. This scaling did not alter the cumulative error trends. 

 

Fig. 38:  Cumulative error plots for elliptical tracking at 1 𝑚/𝑠. Substantial error only occurs in 

velocity. 

 

9) Robot Pirouette 

Figures 39 and 40 respectively show the position and error plots for the pirouette tracking. At 1 

𝑚/𝑠, the drone shows similar behavior to the ellipse tracking. The only difference is the 

orientation tracking. In pirouette tracking, the system tracks the heading angle with only a small 

delay.  



 

Fig. 39: Position plots for the drone tracking the pirouette at 1 𝑚/𝑠. The system successfully 

tracks position, acceleration, and heading with only slight deviations from the desired velocity. 

 

 

Fig. 40: Error plots for the drone tracking the pirouette at 1 𝑚/𝑠. 

 

Modifying the velocities reacts similarly to the elliptical tracking. The magnitude of the tracking 

errors in the velocity, position, and heading all scale with the commanded velocity. However, 

the system can track the pirouette at 2 𝑚/𝑠, which was the divergence speed for the ellipse 



tracking. The pirouette tracking diverges just after 2 𝑚/𝑠. Figures 41 and 42 show the position 

and error plots of the pirouette at a commanded velocity of 1.75 𝑚/𝑠. 

 

Fig. 41: Pirouette tracking behaves similarly to ellipse tracking at increased velocities.  

 

Fig. 42: Error plots in the commanded position behave similarly to the ellipse tracking. The error 

in commanded heading seems to scale linearly with velocity compared to Fig. 40. 

 

I created the cumulative error plots for the pirouette tracker using the same method discussed 

in the ellipse tracking section. The only difference is the heading error. The heading has a slight 



offset throughout the whole simulation. This results in a nearly constant decreasing cumulative 

error. Figure 43 shows the cumulative error from this simulation. 

 

 

Fig. 43:  Cumulative error plots for pirouette tracking at 1 𝑚/𝑠. Substantial error only occurs in 

velocity and heading. 

 

Collaboration: 

I collaborated with Shaun Ryer throughout this project. Our collaboration involved 

understanding the starter code, mapping the starter code modules to the lecture slides, 

debugging, and general advice/guidance in writing the report.  


