
Braden Eichmeier
16-665 – Robot Mobility
November 2, 2019

Air Mobility Assignment

1) System Diagram

Fig. 1: Software pipeline for the quadrotor simulation.

2) Hover Performance

Figure 2 shows the error associated with simulating the hover scenario detailed in the problem

statement. The waypoint changes at seconds 2, 4, 6, and 8 as indicated by the vertical blue lines

in the plots. When achieving each new goal, the quadrotor shows a sinusoidal rise. This rise

phenomena occurs due to the oscillations in achieving the desired attitude in the inner loop. The

quadrotor achieves the new waypoint approximately one second after receiving the goal and

oscillates around the point until the new goal is received.

Fig. 2: Error plots showing the position and orientation errors for hover.

Adjusting the proportional and derivative gains alters the convergence and oscillation of the

system. Increasing the proportional gain makes the system react more aggressively, which can

lead to divergence if Kp is increased too much. Increasing the derivative gain dampens the

oscillations in the system. Dividing the proportional gain by 1.3 resulted in a more smooth

response as shown in Fig. 3.

Fig. 3: Reducing the derivative gain causes the system to better converge to the waypoints.

Modifying the gains for the attitude control behaves similarly with adapting to the attitude

commands. Modifying the gains showed a good convergence occurs when increasing both the

proportional and derivative gains. This is logical because it makes the inner loop respond faster

than the outer loop and reduce dynamic coupling. Figure 4 shows the error results from

multiplying the inner loop proportional and derivative gains by 2 and 1.5 respectively.

Fig. 4: Increasing the inner loop gains gives quick attitude convergence and smooth position

convergence.

3) Line-tracking Performance

Figures 5 and 6 show the position and error plots for the tracking controller. The top-right figure

in Fig. 5 shows the system performs well win achieving the desired states without oscillations.

However, there is a small delay in achieving the desired states when beginning takeoff or

descent.

Fig. 5: Position plots for the line tracking behavior in response to a takeoff, hover, and landing

sequence.

Fig. 6: Error plots for the takeoff, hover, and landing sequence shown in Fig. 5.

Modifying the gains to the system did not significantly alter the plots due to the already low

error. Figures 7 and 8 show updated trajectory metrics with the proportional gains tripled

compared to the previous figures. The largest difference is an increased delay in responding to

the ascent phase.

Fig. 7: The position tracking with increased outer loop gains shows little improvement in

convergence.

Fig. 8: The z-position error shows increased noise and oscillation with the increased position gain.

4) State Machine

Figure 9 illustrates the state machine I implemented in the code. There are three inputs to this

state machine. The first is an array of times to dictate the start and end times for each behavior.

The second input is an array of poses to define the start and end positions of each behavior. The

final input is an array of the desired behaviors for the simulation. The time and pose arrays

should have one more entry than the behavior array, which corresponds to each behavior

having a start and end state. This state machine iterates through behaviors based on the time

bounds. Once the end time has been reached, the machine iterates to the next behavior.

Each behavior is defined by a unique function that precomputes the desired positions for each

moment in time. The behaviors are defined to operate in a single unit time (1 second), then the

state machine scales the time stamps from the behavior function to match the time bounds

from the time array. This method makes the behaviors function independent of time scaling.

Similar scaling is performed for the magnitude of the behaviors using the input poses.

For this assignment, I created several behavior functions: hover, ascend, descend, ellipse, and

pirouette. I also created a second implementation of this state machine for

trajectory_planner.m to precompute the function derivatives in a similar manner. Figure 9 also

shows the code to implement Question 3 using this state machine.

 other = [1,1,1,1];

 times = [0,2,4,8,10];

 behavior = {@hover; @takeoff; @hover; @descend};

 pose1 = [0,0,0,0];

 pose2 = [0,0,0,0];

 pose3 = [0 0 1 0];

 pose4 = [0, 0, 1, 0];

 pose5 = [0 0 0 0];

 poses = [pose1; pose2; pose3; pose4; pose5];

 [points, times] = st_machine(behavior, poses, times, other);

Fig. 9: Block diagram and example code for the state machine implemented to precompute

behavior trajectories.

5) Gain Selection and Tuning

Table 1 shows the system’s response to a step input in both height and heading. The height step

response and error are shown in more detail in Figs. 10 and 11 respectively. The height and

heading responses and errors are shown in Figs. 12 and 13.

Table 1: Quadrotor system response to a step input for the height and heading

Value 𝑴𝑷 (%) 𝒕𝒓 (s) 𝒕𝒔 (s) 𝒚𝒔𝒔

Height 7.5 0.215 0.3 0.1 m
Heading 0 0.38 0.44 15°

Modifying the position controller gains shows the system is stable for 𝐾𝑃 = [40,90] and 𝐾𝑑 =

[4,10]. The system allows higher 𝐾𝑑 with higher 𝐾𝑃 values. Increasing the proportional gain

reduces the response time but increases overshoot and ringing. Increasing the derivative gain

substantially reduces the overshoot and settling time while having little effect on the rise time.

Proportional and derivative gains of 65 and 11.75 result in a quick system with little overshoot.

Fig. 10: State plots in response to a 0.1 m step input using tuned gain parameters.

Fig. 11: Error plots in response to a 0.1 m step input using tuned gain parameters.

The attitude controller gains behave differently than the position controller. For good behavior,

the system should respond faster than the position controller. The stable range for the position

controller is 𝐾𝑃 = [40,160]. For the derivative gain, I could only find a minimum for stability of

18. The highest 𝐾𝑃 results in an overdamped system, thus a small 𝐾𝑑 will produce the most

responsive system. The optimal gains for 𝐾𝑃 and 𝐾𝑑 are 160 and 18 respectively.

Fig. 12: State plots in response to a 15° step input using tuned gain parameters.

Fig. 13: Error plots in response to a 15° step input using tuned gain parameters.

6) LQR Controller design and Evaluation

a) Hover Performance

Using an LQR controller on the hover performance, I found the system converges to the desired

positions with little overshoot. Once attaining the desired values, the systems oscillates a

miniscule amount around the goal state. I found rapid convergence by increasing the z-value.

Figures 14 and 15 show the position and error plots for the system with the Q-z value at 13 and

the Q-x value of 1. All other Q values are set to 0.2 and the R values are set to 1.

Fig. 14: The LQR controller shows good convergence in both the x and z positions with little

tuning.

Fig. 15: The error plots show significant oscillations in the acceleration plots and smooth

convergence in the positions.

The system shows little change with alterations to the Q-z value. Increasing the value leads to

slightly quicker convergence to the goal state. Increasing the Q-x value drastically quickens the

x-position convergence. Doing so causes the z-position to have a steady state error of about

20%. Halving the Q-x value similarly delays the system’s convergence to the goal positions. The

delayed convergence also reduces the maximum z-error to within 0.5 mm. Figures 16 – 19 show

the position and error plots for the modified Q matrix parameters.

Fig. 16: Increasing the Q-x values by about 33%. The z-position error is magnified without steady

state convergence.

Fig. 17: The increased Q-x value amplifies the oscillations in nearly all the position plots.

Fig. 18: Reducing the Q-x value by half causes the system to barely converge to the goal before

iterating to the next goal point.

Fig. 19: The error plots show the miniscule error in each of the states.

The LQR controller behaved quite differently to the PD controller. The PD controller had a slow,

oscillatory behavior to the goal states. An interesting behavior occurs in the angular and

acceleration states using the LQR controller. There are significant oscillations as a unique

controller is computed at each time step. The system shows better convergence with the LQR

controller in response to a step input in hover behavior.

b) Line-tracking Performance

The LQR controller described in section (a) behaves similarly to the PD controller described in

Question 3. The LQR controller lags the desired path for about 1 second before it overshoots the

desired trajectory. At 2.5 seconds the system reconverges to the path with negligible

oscillations. In the descent flight, the system experiences a slight (5 cm maximum) lag with the

desired path. There is no overshoot when converging to the descent path or the hover after

descent.

Fig. 20: The z-position tracking shows similar behavior for both the PD and LQR controllers.

Fig. 21: Maximum error for the described LQR controller does not exceed 10 cm, and occurs

directly after takeoff.

Modifying the Q-z value shows direct effects on the system’s convergence. Increasing the Q-z

value results in lower error. Despite this, the overshoot at the end of the ascent phase does not

change much by increasing the Q-z value. This likely occurs due to a non-flat commanded

trajectory. Lowering the Q-z value increases the system’s lag and overshoot. Figures 22 and 23

show the system behavior with Q-z reduced to 5.

Fig. 22: Reducing the Q-z value causes the system to experience a single overshoot of 18%.

Fig. 23: Significant error in the relaxed LQR controller only occur in the z-position and derivative

values.

When compared to the PD controller, the LQR controller behaves and tunes similarly. The PD

controller does allow greater flexibility in tuning the overshoot behavior of the system. On the

other hand, tuning the LQR controller required much less time to achieve a well performing

system.

c) Gain Selection and Tuning

Table 2 shows the system response to a step input in both height and heading. The LQR

controller shows about a 20% slower rise time and settling time to the step inputs compared to

the PD controller. The overshoot in the height tracking is reduced by about 40%. Tuning the LQR

controller from the LQR controller described in (a) showed good results with a Q-z value of 300

and a Q-𝜓 value of 4. Figures 24-27 show the system response to the height and heading step

inputs.

Table 2: Quadrotor system response to a step input for the height and heading using LQR.

Value 𝑴𝑷 (%) 𝒕𝒓 (s) 𝒕𝒔 (s) 𝒚𝒔𝒔

Height 4.5 0.255 0.345 0.1 m
Heading 0 0.475 0.535 15°

Fig. 24: System response to a step input in height results in smooth convergence and

small overshoot.

Fig. 25: Error plots showing the system response to a step input.

Fig. 26: Position plots for the heading step input show an oscillatory, underdamped

convergence to the input.

Fig. 27: Error plots for the heading step input show significant error only occurs in 𝜓,

and 𝑎𝑧.

Modifying the Q-z and Q-ψ values produces interesting results. Increasing the ψ value to

8 causes the ψ value to converge much more rapidly. The increased gain also attenuates

the oscillations in ψ as it approaches the goal point. After increasing ψ, the z-position

tracking experiences a much larger overshoot than the previous controller. Increasing Q-

z produces little change in the system. Figures 28 and 29 show the system responding

simultaneously to a height and heading step input with the Q-ψ value increased to 1.6.

Fig. 28: State plots for the system with increased Q-ψ in response to step inputs in

height and heading.

Fig. 29: Error plots for the system responding to step inputs in height and heading.

7) Bounded Acceleration Trajectory Generation

I defined the trajectory using the polynomial in Eq. 1. I then bounded the polynomial to have a

maximum acceleration of 3 𝑚/𝑠2. Using this strategy, the system tracks the trajectory without

exceeding the maximum acceleration over a time scale of 4.5 seconds. The system tracks the

trajectory well down to a time scale of 3.4 seconds. After this point, the actual trajectory

oscillates around the desired trajectory. This occurs because the correction acceleration is too

extreme and the bounded system over corrects in tracking the trajectory. Figures 30 and 31

show the position and error performance plots for a time scale of 4.5 seconds.

 𝑧(𝑡) = 3𝑡2 − 2𝑡3 (1)

Fig. 30: The system successfully tracks a 9 m altitude increase without exceeding an acceleration

of 3 𝑚/𝑠2.

Fig. 31: The maximum z-position error is 4 cm. The wide lined error comes from the system

aggressively correcting to the desired position. It is introduced in the position controller.

At a time scale of 3.2 seconds the system begins to show divergence from the desired path.

Increasing the motor constant shows slight improvement to the system. The poor performance

occurs due to the bounded acceleration. Adjusting the motor constant will only enable the

motors to attain the desired accelerations more rapidly, not exceed the maximum accelerations.

Because these desired accelerations are bounded, improved motors are not expected to

significantly improve performance. Figures 32 and 33 show the position and error plots for this

excessive acceleration.

Fig. 32: The system diverges from the desired path, especially during the final hover. This occurs

because the required acceleration is much larger than the bounded acceleration (see the

Acceleration in Z-plot).

Fig. 33: The Z-error plot shows the divergence at the end of the trajectory. Note the Error in 𝑎𝑧

plot remains relatively low, which shows increasing the motor constant will have little effect on

the system performance.

8) Elliptical Trajectory

Figures 34 and 35 show the position and error plots for the elliptical tracking. The velocity plots

show a commanded speed of 1 𝑚/𝑠. This controller performs well in the startup and continuing

ellipses. Towards the end of the final ellipse the system shows overshoot in both the x and y

positions. The overshoot likely occurs because the system has a high position gain relative to the

derivative gain. As the drone begins to slow at the end of its trajectory, it attempts to converge to

both the changing velocity profile and location, which results in the slight divergence.

Fig. 34: Position plots for the drone tracking the ellipse at 1 𝑚/𝑠. The system successfully tracks

position and acceleration with only slight deviations from the desired velocity.

Fig. 35: Error plots for the drone tracking the ellipse at 1 𝑚/𝑠.

Reducing the velocity commands reduces the overshoot in the final ellipse. Increasing the velocity

amplifies the overshoot (error) throughout the trajectory. The system begins to diverge when the

commanded velocity approaches 2 𝑚/𝑠. This is because the drone must achieve accelerations larger

than 3 𝑚/𝑠2, which exceed the error bounds of the drone and cause it to diverge. Figures 36 and 37

show the position and error plots for a commanded velocity of 1.75 𝑚/𝑠.

Fig. 36: Increasing the velocity during ellipse tracking shows the system diverges near the

endpoints of the ellipse. This occurs due to the excessive acceleration during sharp turns.

Fig. 37: The maximum position error occurs in the final turn of the third ellipse.

Figure 38 shows a cumulative error plot for the system. After creating the total cumulative error

plot, I normalized the plots by the number of points per second in order to accurately compare

different simulations. This scaling did not alter the cumulative error trends.

Fig. 38: Cumulative error plots for elliptical tracking at 1 𝑚/𝑠. Substantial error only occurs in

velocity.

9) Robot Pirouette

Figures 39 and 40 respectively show the position and error plots for the pirouette tracking. At 1

𝑚/𝑠, the drone shows similar behavior to the ellipse tracking. The only difference is the

orientation tracking. In pirouette tracking, the system tracks the heading angle with only a small

delay.

Fig. 39: Position plots for the drone tracking the pirouette at 1 𝑚/𝑠. The system successfully

tracks position, acceleration, and heading with only slight deviations from the desired velocity.

Fig. 40: Error plots for the drone tracking the pirouette at 1 𝑚/𝑠.

Modifying the velocities reacts similarly to the elliptical tracking. The magnitude of the tracking

errors in the velocity, position, and heading all scale with the commanded velocity. However,

the system can track the pirouette at 2 𝑚/𝑠, which was the divergence speed for the ellipse

tracking. The pirouette tracking diverges just after 2 𝑚/𝑠. Figures 41 and 42 show the position

and error plots of the pirouette at a commanded velocity of 1.75 𝑚/𝑠.

Fig. 41: Pirouette tracking behaves similarly to ellipse tracking at increased velocities.

Fig. 42: Error plots in the commanded position behave similarly to the ellipse tracking. The error

in commanded heading seems to scale linearly with velocity compared to Fig. 40.

I created the cumulative error plots for the pirouette tracker using the same method discussed

in the ellipse tracking section. The only difference is the heading error. The heading has a slight

offset throughout the whole simulation. This results in a nearly constant decreasing cumulative

error. Figure 43 shows the cumulative error from this simulation.

Fig. 43: Cumulative error plots for pirouette tracking at 1 𝑚/𝑠. Substantial error only occurs in

velocity and heading.

Collaboration:

I collaborated with Shaun Ryer throughout this project. Our collaboration involved

understanding the starter code, mapping the starter code modules to the lecture slides,

debugging, and general advice/guidance in writing the report.

