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Abstract—Modern approaches to solving the simultaneous lo-
calization and mapping (SLAM) problem optimize a factor graph
to better estimate an agent’s pose and surrounding environment.
However, the standard optimization uses the sensors’ expected
covariance to weight their influence during the optimization call,
which causes error in the optimized path if the covariance in
the environment is different than expected. We propose using a
method that utilizes a Neural Network (NN) to weight the sensors
based on an online standard deviation computation relative to the
other sensors, a metric we coined as psuedo-covariance. Using
this method we are able to dynamically re-weight and influence
the optimizer to produce a result close to the true path even
with very large noise and model changes. Preliminary simulation
testing for this method shows a 5.7x improvement compared to
relying on expected covariance measurements.

I. INTRODUCTION

Modern approaches to solving the simultaneous localization
and mapping (SLAM) problem focus on optimizing a factor
graph of sensor measurements and poses. In this formulation
a sparse matrix is formed and solved using a least squares
approach. Due to the linear optimization approach, this method
lends itself best to purely linear systems. However, established
techniques exist for nonlinear systems as well.

Formulating the SLAM problem as an optimization involves
minimizing the error between a sensor measurement vector
zi and the sensor model vector hi(θ). Linearizing the sensor
model at an estimated state (Hi) reduces the computation
to minimizing the Mahalanobis distance at the linearization
point (1). Clever redefinition of the system with the covariance
matrix Σi reduces the computation further into a more concise
linear optimization (2) [4].

Xopt = argmin
x
||Hix− (zi − hi(x))||2Σi

(1)

Xopt = argmin
x
||Σ−1/2(Hix− (zi − hi(x)))||2 (2)

The expected standard deviation for each factor can be
viewed as a weighting factor that emphasizes the relative
importance of each sensor measurement. Indeed, it can be seen
as a generic confidence metric (w) of a given sensor at a given
time (Eqn. 4).

Xopt = argmin
x
||Σ−1/2 ∗ (Aix− bi)||2 (3)

where
Ai = Hi

bi = zi − hi(x)

In well structured environments this weighting factor is
mostly constant and can reliably be used throughout the course
of the algorithm execution. Application in varied situations in
the wild may cause sensors to change in expected quality of
performance over time. As such, we represent the previous
optimization with a time varying weighting vector:

Xopt = argmin
x
||w(X, t) ∗ (Aix− bi)||2 (4)

As an example we consider the setting where a vehicle is
equipped with GPS, visual odometry, and wheel odometry. As
the car drives through rural regions on the highway effective
localization can utilize purely the GPS with intermediate
updates performed with the noisy odometry. Visual sensing
in these regions may suffer due to the lack of features.
However, as the vehicle travels into a metropolitan area with
high buildings the GPS may begin to suffer while the visual
component begins to perform reliably. In this transient setting,
the optimization would need to effectively re-balance the
weighting factors to achieve satisfactory results.

We present a regionally adaptive weighting scheme to the
optimization procedure. Specifically, we convert the joint sen-
sor measurements in a given region into a pseudo covariance
estimation. This is done by iteratively assuming each sensor
is perfect, and comparing the other sensors’ output to the
assumed true sensor. A neural network learns to untangle the
relationships the psuedo-covariance values and the underlying
distribution for each sensor. Finally, the weights are computed
from these predicted standard deviations.

II. RELATED WORKS

A. Robust SLAM

Adaptive factor weighting falls under a broad range of
research across various fields of estimating the covariance in
data. In recent SLAM literature this problem is framed under
Robust Map Optimization and focuses on removing outliers.
Several works along this front have focused on defining the
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likeliness of the outlier according to a binary switching vari-
able [3]. The original formulation simply attempted to quantify
whether or not a single data point as an outlier, but heavily
increased computational complexity [9]. This work developed
via marginalization in an approach titled Dynamic Covariance
Scaling [1][2]. The same author continued the work using a
max-mixture, where the probability p(zi|x) is computed as
the maximum of a mixture of Gaussian samples [7]. Work
to evaluate the algorithms has found good results, but slightly
worse performance than iSAM2 [8]. Watson improved the max
mixture approach using Gibbs sampling of a Dirichlet process
to characterize the covariance [11].

B. Covariance Estimation for State Estimations

There has also been many attempts at learning the covari-
ance matrices of sensors for the state estimation problem.
CELLO [10] approximated the covariance of a sensor at a
given state as the sample covariance of neighboring states
in a hand-coded feature space. It was able to automate the
covariance tuning step for EKFs and allow for varying co-
variances within the algorithm. However, the need for hand-
engineering features somewhat defeats the purpose. Similarly,
[5] also relies on hand-coded features, albeit providing a more
streamlined approach to learning the covariance mapping.

After deep learning gained significant popularity, the authors
of CELLO proposed a new algorithm, DICE [6], utilizing
convolutional neural networks to learn the mapping from raw
sensor measurements to the covariance matrices. It does so
through maximizing the likelihood of producing a training set
of sensor errors given the predicted covariance. The training
sensor errors are generated in a controlled environment with
ground truth sensors such as the Vicon cameras, and subtract-
ing the raw sensor data from it. The authors were also clever
in adding a layer of post-processing between the NN output
and the covariance matrix to relieve the need of producing
positive definite outputs from the NN.

While this approach shows promise in single sensor, espe-
cially visual sensor scenarios, it does not include meaningful
information from the map when the sensor output is simplistic.
For example, learning the mapping from a GPS’s output
directly to the covariance matrix does not in fact consider
the effect of nearby skyscrapers, and learning the mapping
from wheel encoder output to the covariance matrix cannot
encapsulate tire slippage. Furthermore, when applying to the
SLAM problem, by having the learning purely offline the
accuracy of past estimations and their relationship to current
and future estimations are lost. Instead, we look at using
other sensors’ measurements to help in predicting the current
sensor’s uncertainty.

III. METHODS

A. Robot and Sensor Models

The robot motion and sensors all use a basic linear scheme
to focus more time and effort on the optimization and adaptive
weighting algorithms. Accordingly, the robot motion model

follows a basic (x,y) point control where the controller directly
commands the change in robot state (5).

pt+1 = pt + ut (5)

The robot has 3 methods to sense the environment. The
first method is an odometry sensor that outputs the estimated
change in pose at each time step (6). The second sensor is a
relative position sensor that mimics sparse feature detection
(7). The final sensor is a global position sensor that reports
the true position of the robot (8). Each of these sensors are
linear with Gaussian noise added to the true values.

Zodom = pt+1 − pt +N(0, σ) (6)

Zfeature = li − pt +N(0, σ) (7)

ZGPS = pt +N(0, σ) (8)

In practice each sensor in a localization system will have its
own expected covariance. In this simulation, we assume the
sensors have an equal level of noise. As such, the expected
covariance for each sensor will be set to 1. We also make
the assumption that the noise is drawn from a zero meaned
Gaussian.

B. Simulation World

For the simulation environment we created a 2-D world
populated with areas where the robot can go and areas that the
robot cannot. The simulation is passed between the robot and
environment as shown in Fig. 1. This environment produces
a set of noisy data for the SLAM problem and true data for
verification and reporting.

The simulation maps are divided into quadrants. Quadrant
1, where the robot begins, produces sensor results according to
the expected sensor noise. The remaining quadrants increase
the noise of one of the sensors by an order of magnitude.
Applying the sensor noise in this manner creates stark changes
in sensor quality without notice to the algorithm.

C. On the Fly Covariance Estimation

1) Pseudo-Covariance Computation: The main difficulty
in computing the covariance of a sensor is the true path is
unknown. We propose extracting the covariance of each sensor
by computing the covariance between sensors over a small
period of time. In this process we assume the measurement
noise is i.i.d between both sensors and measurements. To
resolve the problem of not knowing the true path, we present
a method to create some semblance of ground truth.

Because the final optimized path will be some weighted
combination of the paths generated by the individual sensors,
each sensor individually can be used to generate a nominal
path. For a nominal path created by fully trusting one sensor,
”pseudo” standard deviations (σ′) for the other sensors can
be computed relative to the nominal path. Figure 2 shows an



Fig. 1. Outline of Simulation, Robot, and SLAM systems.

Fig. 2. The pseudo convariance between one sensor (green) and another
(blue) can be found as the standard deviation of the error between believed
poses of each sensor. True path is shown in black.

example of computing this pseudo covariance between two
sensors.

2) Extracting Weights from the Pseudo-Covariance Matrix:
We use a neural network to map the pseudo covariances
directly to the sensor standard deviations. The neural network
learns the underlying sensor error function with respect to the
sensor outputs, and maps the pseudo covariances into final
covariance values that following Gaussian distributions. The
base features to the model are the upper-triangular elements
in the pseudo covariance matrix. In many settings, external
knowledge can create a prior to better bias the network’s
prediction. These priors could come from environment knowl-
edge, or nominal sensor noise. We augment the base features
with a prior to improve prediction accuracy.

To protect from prediction instabilities, bounds are placed
on the predictions to enforce both maximum and minimum
standard deviation predictions. Initial testing in this paper
computes the resultant weights as the inverse of the bounded
network predictions. However, more complex non-linear func-
tions may be explored in future testing to produce more stable
results. Algorithm 1 shows the basic outline for the weight
extraction procedure.

D. Optimization

The SLAM component of the algorithm uses the Levenberg-
Marquardt algorithm to optimize the factor graph. The opti-

Algorithm 1 Pseudo Covariance Weight Extraction
1: procedure EXTRACTWEIGHTS(~z, ~p)
2: Input ~z: Sensor data from m sensors
3: Input ~p: Prior estimate of sensor covariance
4: Initialize: σ′m,m = 0
5: Compute nominal path Xi for each sensor zi
6: for i ∈ {0,m} do
7: for j ∈ {i+ 1,m} do
8: σ′i,j = std(Xi −Xj)

9: Σ = predict(σ′, ~p)
10: w = Σ−1/2

11: return w
12: procedure PREDICT(σ′, ~p)
13: Input σ′: Pseudo covariance values
14: Input ~p: Prior estimate of sensor covariance
15: while Not converged do
16: ~p = NN predict([σ′, ~p ] )
17: return w

mizer runs at a regular interval (every 10 simulation steps
currently). In each optimization call, the algorithm optimizes
a set of unknown values (the poses and landmarks) according
to some constraints (sensor readings). An error function uses
these data to create reducible cost for the optimizer, which
iteratively computes the optimal values. In this framework,
each sensor must have a an error function that returns an
error based on corresponding pair of estimated values and
measurement.

At optimization time, the previous 2n (20 in this setup)
time steps are sent for optimization. This means each data
point is called twice and is done to correct poorly optimized
points once new data gives more insight to the error model
both before and after a time step. The weights for each time
step are computed using a sliding window of size n. The
first n/2 time steps use the first n measurements. The next
n time steps use the n/2 measurements before the time step
and the n/2 measurements after the time step to compute the
weights. The final n/2 data points use the last n measurements.
Equation 9 shows this setup. Once the weights are computed,
the optimizer runs the weighted least squares optimization
given by Eqn. 4.

wt =


extractWeights(~z0:n), t < n/2

extractWeights(~zn:2n), t > 3n/2

extractWeights(~zt−n/2:t+n/2), otherwise

(9)

E. Neural Network Design and Prediction

The neural network used to extract the individual sensor
measurements from the pseudo uses a 2-layer MLP regres-
sion scheme. Each layer has 30 nodes with ReLU activation
functions. The network trained using a dataset comprised of
simulated sensor distribution paths. Each sample drew the



target covariances from a bounded [1,50] uniform distribution.
Then the pseudo covariances were computed by sampling
trajectories from each of the distributions. Finally, zero-mean
noise (σp) is added to the true covariances, which are added
as a prior to the feature. The final sample is given by Eqn. 10.

Xi = ([σ′i, N(Σi, σp)],Σi) (10)

At prediction time the pseudo covariance values are con-
catenated with the prior and fed into the network. In settings
where the prior is informative, a single prediction tends to
give informative results. However, when the underlying sensor
distribution changes suddenly the prior can hinder accurate
prediction. In this paper we assume the weighting algorithm
is environment agnostic and only has access to the raw sensor
data. To alleviate the results of a poor prior, we use the
prediction from the network as a new prior to iteratively
converge to a solution. Testing showed this method converged
to a value within few iterations, and the resulting prediction
values were similarly accurate as a single prediction with an
informative prior.

IV. RESULTS

To test the system a simplistic simulation environment was
created. This was populated with features, sensors, and a robot
model. The models are as general as possible so that sensors
or models could be changed later on. Currently only linear
models for the sensor and robot are being used, so that the
team could focus on the adaptive component of the algorithm.

In the following figures, black areas are zones that the robot
cannot enter (i.e. walls). The blue line or noisy path shows
the path the robot would think it’s traversed if only odometry
values were used. As seen in Fig. 3 the noise continuously
compounds and experiences drift over the course of the path.
The green line shows the true path travelled by the robot. The
yellow path (optimize path) shows the path optimized by the
SLAM algorithm. We also included the true and estimated
positions of detected features in blue and orange respectively.
Figure 3 shows effective path optimization with low noise
reliable data.

Fig. 3. SLAM using low noise sensors.

Figure 4 shows the importance of finding a dynamic weight-
ing approach for factor graph SLAM optimization. In this test,
the world is split into regions, each region has a different color
and noise for each sensor. In the gray region, noise exist but
is minimal, for the red regions noise in the GPS is increased
by 50 times. The blue region increases noise in the odometry
sensor 50 times, and in the green region feature detection is
increased 50 times. In the real world, this can be caused by
significantly high noise, or sensor failures caused by damage.
Due to the changing noise models the optimizer was unable
to produce good results.

Fig. 4. SLAM without dynamic weighting (different colored regions have
different noise values).

Using the adaptive weighting scheme discussed in methods,
the same path was run again, the results can be seen in Fig. 5.
This resulted in a significantly better path than the path found
in Fig. 4.

Fig. 5. SLAM with dynamic weighting (different colored regions have
different noise values).

For the dynamic weighting the optimization proves decent
results, the only errors appear close to the changes from high
noise in one sensor to high noise in another. To show this
behavior in more clarity, we plotted the different levels of
noise of each of the sensors (red green and purple) as well
as a baseline using odometry measurements (orange) and our
dynamic weighting system (blue) in Fig. 6. The area between
high noise of the GPS (red) and odometry (purple), there exist
a large peak in the error of the dynamic weighting system.



Fig. 6. SLAM without dynamic weighting (different colored regions have
different noise values).

This occurs because when the robot initially enters a new
region, it takes time to detect a bad region and re-weight the
sensors, this means some readings from sensors will have the
wrong weighting and lead to errors in optimizations.

In the real world, sharp discontinuities usually aren’t as
prevalent and gradient would be a better model, however,
a significant amount of these errors can be fixed by using
sliding window when optimizing the path. Fig. 7 shows the
improvement over Fig. 5 when using a sliding window instead
of batch for the optimization. This error between regions could
possibly be further reduced by using a smoothing function and
outlier rejection.

Fig. 7. SLAM without dynamic weighting using a sliding window (different
colored regions have different noise values).

To further clarify this point, the error from the true path
was collected for the following algorithms: equal weighting
for each sensor, dynamic weighting using batch optimization,
and dynamic weighting using a sliding window. The results,
shown in Table. I, show the major improvement of the dynamic
weighting as well as the benefit of using a sliding window
when compared to the control (equal weighting). The dynamic
weighting shows a 5.7x improvement compared to results from
equal weighting.

We also plotted the algorithms by their average off-track
error with respect to the errant noise of the sensors, shown in
Fig. 17. This illustrates how increasing the noise will usually
increase the error quite significantly, as seen in the equal

TABLE I
AVERAGE ERROR OF ALGORITHMS

Algorithm Average Error

Equal Weighting 2271.66± 162.35

Dynamic Weighting (Batch) 540.70± 87.01

Dynamic Weighting (Sliding) 392.89± 88.57

weighting case. However, our two methods are impacted less
by larger noise values when compared to equal weighting.

Fig. 8. Error of equal weighting, dynamic weighting (batch), and dynamic
weighting (sliding window).

In assessing the robustness of our algorithm, instead of
various regions of constant standard deviations, we tested
linearly increasing/decreasing it within a region, and having
more than one sensor with poor standard deviation at the same
location. Figure 9 shows the test case, where on the left half
all sensors have low noise, but on the right half, GPS has
increasing noise from left to right, and Feature Sensor has
decreasing noise. As we can see, before weighting with our
algorithm localization is poor.

Fig. 9. Linearly Changing Noise GPS and Feature Sensors with no weighting

Figure 10 shows the results after optimization. As we can



Fig. 10. Linearly Changing Noise GPS and Feature Sensors Optimized

see, even when 2 out of 3 sensors have 20x noise, our
algorithm is able to learn to trust the correct sensor for accurate
localization.

We also increased the number of sensors to 5, where 3 of
them have simple Gaussian errors on the position (GPS like),
and tested how many high noise sensors the system is able to
withstand at a time. Figures 11 through 14 shows our results.
The top left quadrant always has 0 noisy sensors, while the
other three quadrants has more than 1 noisy sensors present
at a time. Our algorithm is able to handle up to 3 out of 5
noisy sensors at a location, and when even 1 of the sensors
has low noise as shown in Figure 13 the algorithm maintains
somewhat reasonable tracking. It is only when all 5 sensors
have high noise that our system fails.

Fig. 11. 2 out of 5 Noisy Sensors - optimized

Lastly, we wanted to see how our system would perform
in more realistic scenarios with more gradient noise and
less structured paths. Fig. 15 and Fig. 16 shows a different
environment with equal weighting and dynamic weighting
with sliding window respectively. As expected our system
performs much better in this new environment compared to
a equal weighting system.

We further the performance analysis beyond the visual
confirmation of improved performance between Fig. 15 and
Fig. 16. Numerically, this can be shown using the same
approach described in Fig. 17. The results mirror the same

Fig. 12. 3 out of 5 Noisy Sensors

Fig. 13. 4 out of 5 Noisy Sensors - optimized

Fig. 14. 5 out of 5 Noisy Sensors

behavior as the previous test: sliding window is the most
effective with equal weighting being the least effective, and
all methods increase linearly with noise. The equal weighting
method performs better than the approximation methods at low
noise, up to about a standard deviation of 5, which further
confirms the canonical method is optimal when the sensor
covariance is known. This testing environment also has higher
error for the proposed methods that can likely be attributed to
the sensor errors increasing simultaneously near the middle of
the map.



Fig. 15. Gradient noise and circular path using equal weighting.

Fig. 16. Gradient noise and circular path using dynamic weighting (sliding
window).

Fig. 17. Error of equal weighting, dynamic weighting (batch), and dynamic
weighting (sliding window).

V. CONCLUSION AND FUTURE WORK

We present a novel method for estimating sensor covariance
for multi-sensor localization. Preliminary testing using a low-
fidelity simulator shows promising results for identifying poor
sensor behavior. Without assuming any distribution in the
sensors, the algorithm effectively corrects poor sensor readings

in an environment with drastically changing sensor reliability.
The only regions of poor performance are when the sensors
experience an extreme sudden change in performance. How-
ever, the errors from this poor performance are fairly localized
if a global position sensor is used.

Future work for this project would involve testing the
algorithm with real world data. An ideal data set would have
True position and/or GPS, odometry, and an indirect odometry
sensor such as laser scans or visual odometry. The goal of
testing on real world data would be to verify the algorithm
produces similar results when the nominal sensor covariance
is accurate throughout a scenario. The second goal is to verify
the system corrects poor sensor measurements if the sensor
distribution varies through the optimization. If open source
datasets do not have segments of sensor unreliability, they
would need to be modified to introduce extra noise to the data
to further evaluate the algorithm. Candidate data sets for future
testing would include the KITTI or Victoria Park datasets.

The other thrust of future work is to improve the response
to abrupt shifts in sensor data quality. The sliding window
method given by Eqn. 9 gives better results than using a
fixed optimization over n data points. However, this aspect
of applying the covariance estimation could likely be tuned to
further reduce the divergent behavior on sharp boundaries. Fur-
ther testing in the low-fidelity simulator could also implement
more realistic non-linear sensor and motion models. These
may include a non-linear range and bearing feature sensor or
an ackermann steering odometry model.
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